“α-Degree Closures for Graphs”

Ahmed AINOUCHE
\textbf{\textit{\Largeα—Degree Closures for Graphs}}

Ahmed Ainouche
UAG - CEREGMIA
Campus de Schoelcher - B.P. 7209
97275 Schoelcher Cedex. Martinique (FRANCE)
a.ainouche@martinique.univ-ag.fr

September 27, 2011

\textbf{Abstract}

Bondy and Chvátal [7] introduced a general and unified approach to a variety of graph-theoretic problems. They defined the \textit{k-closure} $C_k(G)$, where \textit{k} is a positive integer, of a graph G of order \textit{n} as the graph obtained from G by recursively joining pairs of nonadjacent vertices \textit{a, b} satisfying the condition $C(a, b) : d(a) + d(b) \geq k$. For many properties \textit{P}, they found a suitable \textit{k} (depending on \textit{P} and \textit{n}) such that $C_k(G)$ has property \textit{P} if and only if G does. For instance, if \textit{P} is the hamiltonian property, then \textit{k} = \textit{n}.

In [3], we proved that $C(a, b)$ can be replaced by $d(a) + d(b) + |Q(G)| \geq \textit{k}$, where $Q(G)$ is a well-defined subset of vertices nonadjacent to \textit{a, b}.

In [4], we proved that, for a $(2 + \textit{k} - \textit{n})$-connected graph, $C(a, b)$ can be replaced by $|N(a) \cup N(b)| + \delta_{ab} + \varepsilon_{ab} \geq \textit{k}$, where ε_{ab} is a well defined binary variable and δ_{ab} is the minimum degree over all vertices distinct from \textit{a, b} and non adjacent to them. The condition on connectivity is a necessary one.

In this paper we show that $C(a, b)$ can be replaced by the condition $d(a) + d(b) + (\overline{\alpha_{ab}} - \alpha_{ab}) \geq \textit{k}$, where $\overline{\alpha_{ab}}$ and α_{ab} are respectively the order and the independence number of the subgraph $G - N(a) \cup N(b)$.

All these three last conditions are uncomparable, unique and well defined. Moreover any hamiltonian cycle in $C_n(G)$ can be transformed into a hamiltonian cycle in the original graph within a polynomial time. However, unlike the conditions given in [3] and [4], the condition $(\overline{\alpha_{ab}} - \alpha_{ab})$ cannot be computed in polynomial time. By giving suitable upper bounds of α_{ab} (or lower bounds of $(\overline{\alpha_{ab}} - \alpha_{ab})$) we satisfy this last nice property. In doing so, we surprisingly obtain a result of [8] as an easy Corollary.

\textbf{Key words:} Closure, Degree Closure, Neighborhood Closure, Dual Closure, Stability, Hamiltonicity, Cyclability, Degree Sequence, Matching Number, k-Leaf-Connected.
1 Introduction

Let $G = (V, E)$ be a finite simple graph of order n, connectivity $\kappa(G)$. Ore [7] proved that G is hamiltonian if the condition $d(a) + d(b) \geq n$ is satisfied by any pair (a, b) of nonadjacent vertices. Later, Bondy and Chvátal [7] observed that G is in fact hamiltonian if and only if $G + ab$ is hamiltonian. This observation motivated the introduction of the concept of the k–closure $C_k(G)$ of G, for a given positive integer k. The graph $C_k(G)$ is the graph obtained from G by recursively joining pairs of nonadjacent vertices whose degree sum is at least k. This graph is unique and polynomially obtained from G. For a number of various properties of a graph G on n vertices, they showed that it is possible to find a suitable integer k, such that if G has property $P(k)$, so does $C_k(G)$. For instance, if P is the hamiltonian property, then $k = n$.

Starting from the main result obtained in [2] we improved the condition $P(k) : d(a) + d(b) \geq k$ in two directions:

In [3], $P(k)$ becomes: $d(a) + d(b) + |Q(G)| \geq k$, where $Q(G)$ is a well-defined subset of vertices nonadjacent to a, b. The corresponding condition is named “β–dec” for β–degree closure condition.

In [4], for a $(2 + k - n)$-connected graph, $P(k)$ becomes: $|N(a) \cup N(b)| + \delta_{ab} + \varepsilon_{ab} \geq k$, where ε_{ab} is a well defined binary variable and δ_{ab} is the minimum degree over all vertices distinct from a, b and non adjacent to them. The corresponding condition is named “β–nccl” for β–neighborhood closure condition. The condition on connectivity is not a real constraint since it is a necessary condition.

In this paper, we use a relaxation of the main result given in [1] to obtain another improvement of $P(k)$. The new condition is: $d(a) + d(b) + |\sigma_{ab} - \alpha_{ab}| \geq k$, where σ_{ab} and α_{ab} are respectively the order and the independence number of the subgraph $G - N(a) \cup N(b)$. We shall refer to it as “α–dec” for α–degree closure condition.

To state the new results and to relate them to existing ones, we need some preliminary definitions and notations.

2 Definitions and notations

We use Bondy and Murty [9] for terminology and notation not defined here and consider simple graphs only. Let $G = (V, E)$ be a graph of order $n \geq 3$. The set of neighbors of a vertex $v \in V$ is denoted $N_G(v)$ and $d_G(v) = |N_G(v)|$ is the degree of v. If A is a subset of V, $G[A]$ will denote the subgraph induced by A.

Let C be a cycle in G, in which a direction of traversing it is given. For $u \in V(C)$, u^+ (resp. u^-) denotes its successor (resp. predecessor) on C. More generally, if $A \subseteq V$ then $A^+ := \{u \in C \mid u^- \in A\}$ and $A^- := \{u \in C \mid u^+ \in A\}$. Given vertices a, b of C let $C[a, b]$ denote the subgraph of C from a to b in the chosen direction. We shall write $C(a, b)$ or $C(a, b)$ or $C(a, b)$ if a, b or $(a$ and $b)$ are respectively excluded. The same notation will be adopted if we consider a path P (where the direction of traversing it is assumed) instead of a cycle C.

2
Paths and cycles in $G = (V, E)$ are considered as subgraphs and for simplicity we use the same notation to mean a subgraph, its vertex set or its edge set.

The concept of vine [6] plays a central role for our proofs. A vine on a path $\pi := \pi[a, b]$ is a set $\mathcal{P} := \{\pi_i[x_i, y_i] \mid 1 \leq i \leq m\}$ of internally disjoint paths such that
\begin{itemize}
 \item[(a)] $\pi_i \cap \pi = \{x_i, y_i\}$
 \item[(b)] $a = x_1 \prec x_2 \prec y_1 \preceq x_3 \preceq y_2 \preceq x_4 \prec \ldots \preceq x_m \prec y_m = b$ on π
\end{itemize}
(here $u \prec v$ (resp. $u \preceq v$) means that u precedes v on P (resp. possibly $u = v$) where π is oriented from a to b).

With each vine \mathcal{P} on a path $\pi[a, b]$ is associated a constrained cycle $C_{ab} := \sum_{i=1}^{m} C_i$, where $C_i := \pi[x_i, y_i]$, $1 \leq i \leq m$ and the addition of edges in $\sum_{i=1}^{m} C_i$ is taken modulo 2. In this paper the paths $\pi_i[x_i, y_i]$ are in fact edges because we shall only focusing on a Hamiltonian path π instead of any path.

Let (a, b) be a pair of nonadjacent vertices, x be any vertex not adjacent to a and b and k be a positive integer. Then we associate

\[
\begin{array}{ll}
 (a) & G_{ab} := G - N_G(a) \cup N_G(b), \ T_{ab}(G) := V(G_{ab}) \setminus \{a, b\} \\
 (b) & \bar{G}_{ab}(G) := |G_{ab}| = 2 + |T_{ab}(G)|, \ \alpha_{ab} := \alpha(G_{ab}), \ \nu_{ab} := \nu(G_{ab}) \\
 (c) & \Delta_{ab}(G) := \max \{d_G(x) \mid x \in T_{ab}(G)\}, \ \delta_{ab}(G) := \min \{d_G(x) \mid x \in T_{ab}(G)\} \\
 (d) & \sigma_{ab}(G) := d_G(a) + d_G(b), \ \gamma_{ab}(G) := |N_G(a) \cup N_G(b)| \\
 (e) & \lambda_{ab}(G) := |N_G(a) \cap N_G(b)|.
\end{array}
\]

Note that G_{ab} is disconnected since a, b are isolated vertices and $\nu(G_{ab})$ is the matching number of G_{ab}. For a given Hamiltonian path μ, let the vertices be ordered so that $i < j$ implies that i appears before j on the path μ. Traversed from a to b. Let a directed graph \bar{G} be produced from G by designating a direction to arc ij of G from i to j whenever $i < j$. The a to b vertex connectivity of \bar{G} is denoted h_{ab}^G. Dirac [10] proved that a vine with two paths exists on any path in a two-connected graph. In that case, these two paths satisfy the constraint on h_{ab}^G. In other words, $h_{ab}^G \geq 2$ holds for any 2-connected graph.\bar{G}.

In [1], we proved:

Theorem 1 Let G be a graph of order $n \geq 3$. If $\alpha_{ab} \leq h_{ab}^G$ then G is Hamiltonian if and only if $G + ab$ is Hamiltonian.

In [2] we conjectured the following.

Conjecture 1 Let G be a κ-connected graph of order $n \geq 3$. If $\alpha_{ab} \leq \max(\kappa, \lambda_{ab})$ then G is Hamiltonian if and only if $G + ab$ is Hamiltonian.

The condition $\alpha_{ab} \leq \max(\kappa, \lambda_{ab})$ will be referred to as the "$\alpha - cc$" for α-closure condition. This new condition admits two incomparable relaxations.

- Going beyond our result in [1], we treat the case $\max(\kappa, \lambda_{ab}) = \lambda_{ab}$ in this paper. In particular we get the main result of [8] as an easy corollary. The
corresponding condition of this case, that is, \(\alpha_{ab} \leq \lambda_{ab} \), will be referred as the \(\alpha \)-degree closure condition (\(\alpha - \text{dcc} \)). This condition involves the degree sum of \((a, b)\) since \(\alpha_{ab} \leq \lambda_{ab} \Leftrightarrow \sigma_{ab} + (\bar{\sigma}_{ab} - \alpha_{ab}) \geq n \).

- In another paper in preparation [5] we consider the conjectured part of the condition, that is \(\max(\kappa, \lambda_{ab}) = \kappa \). This will be referred as the alpha-neighborhood closure condition (\(\alpha - \text{ncc} \)). Particular cases \(\kappa = 2, 3 \) will be proved and a particular condition treated in [8] will be improved.

Following Bondy and Chvátal ([7]), we define:

Definition 1 Let \(P \) be a property defined for all graphs \(G \) of order \(n \) and let \(k \) be an integer. Let \(a, b \) be two nonadjacent vertices satisfying the condition

\[
P(k) : \alpha_{ab}(G) \leq \lambda_{ab} + n - k \Leftrightarrow \sigma_{ab}(G) + (\bar{\sigma}_{ab} - \alpha_{ab}) \geq k.
\]

Then \(P \) is \(k \)-alpha degree stable if whenever \(G + ab \) has property \(P \) and \(P(k) \) holds then \(G \) itself has property \(P \). We simply denote by \(dC_k(G) \) the associated (\(\alpha \)-degree closure).

The graph \(dC_k(G) \) is then obtained from \(G \) by recursively joining pairs of nonadjacent vertices \(a, b \) for which (*) holds until no such pair remains. The equivalence in (*) comes from the equalities \(\sigma_{ab} = d(a) + d(b) = \gamma_{ab} + \lambda_{ab} \) and \(\bar{\sigma}_{ab} + \gamma_{ab} = n \). For the very particular case where \(T_{ab} \) is an independent set, (*) reduces to Bondy-Chvátal’s known closure condition. The statement below is an easy adaptation of Proposition 2.1 in [7].

Proposition 1 If \(P \) is \(k \)-alpha degree stable and \(dC_k(G) \) has property \(P \) then \(G \) itself has property \(P \).

In this paper, we investigate the stability of a number of properties of graphs which remain in any super-graph of \(G \) (a graph obtained from \(G \) by addition of edges). Most of these properties are studied in [7]. We also provide new properties. Throughout let \((a, b)\) be a pair of nonadjacent vertices of a graph \(G \) satisfying the condition (*) for a given positive integer \(k \). For each one of the considered properties \(P \) we fix \(k \) so that \(G \) has properties \(P \) whenever \(G + ab \) does. Below is a key-lemma for the remaining of the paper.

Lemma 1 Let \(\pi[a, b] \) be a hamiltonian \(a - b \) path. If \(\alpha_{ab} \leq \lambda_{ab} \) then \(G \) is hamiltonian.

Proof. A proof by induction is already given in [1]. Here we provide an alternative constructive one which has its own interest. By contradiction we assume \(G \) nonhamiltonian.

Set \(W := \{w_i \in N(a) \cap N(b) | i = 1, \ldots, \lambda_{ab}\} \) and \(W_j := \pi(w_{j}, w_{j+1}) \) for \(j = 1, \ldots, \lambda_{ab} - 1 \). It is clear that the vertices of \(W \) cannot be consecutive on \(\pi \) and
$W_i \subseteq T$ holds for all i since otherwise we have an obvious Hamiltonian cycle. This implies that $T \neq \emptyset$ and $\alpha_{ab} \geq 3$. This in turn implies $\lambda_{ab} \geq 3$. Therefore we have $w_1 \prec w_2 \prec \ldots \prec w_{\lambda_{ab}}$. Within each W_i, choose a subinterval $D_i := \pi(b_i, a_i)$ such that $b_i \in N(b)$, $a_i \in N(a)$ and $D_i \subseteq T$. Such a subpath exists as we always may choose $b_i = w_i$, $a_i = w_{i+1}$. Otherwise we have $w_i \prec b_i \prec a_i \prec w_{i+1}$ for $i = 1, \ldots, \lambda_{ab}$.

We now define a set $R := \{r_1, \ldots, r_{\lambda_{ab} - 1}\}$ as follows:

(i) $r_1 := a_1^1$. Clearly $r_1 \in W_1 \neq \emptyset$ exists.

(ii) $r_2 \in W_2 \setminus [N(r_1)]$ is chosen so that $r_2^+_1 \in N(a) \cup N(r_1)$. If $W_2 \cap N(r_1) = \emptyset$ we set $r_2 := a_2$. Note that $r_1 b_2^+ \notin E$ since otherwise the constrained cycle of the vine $P := \{aa_1, r_1 b_2^+, b_2 b\}$ is Hamiltonian. Thus $r_2 \neq b_2$ exists and $\{r_1, r_2\}$ is an independent set.

(iii) $r_3 \in W_3 \setminus [N(r_1) \cup N(r_2)]$ is chosen so that $r_3^+_2 \in N(a) \cup N(r_1) \cup N(r_2)$. If $W_3 \cap [N(r_1) \cup N(r_2)] = \emptyset$ we set $r_3 = a_3$. Note that $r_1 b_3^+ \notin E$ since otherwise the constrained cycle of either the vine $P := \{aa_2, r_2 b_3^+, b_3 b\}$ is Hamiltonian if $r_2 = a_2^+$ or the vine $P := \{aa_1, r_1 r_2^+, r_2 b_3^+, b_3 b\}$ is Hamiltonian if $r_2 \prec a_2^+$ and $r_1 = a_1^+$. We observe that r_3 exists and $\{r_1, r_2, r_3\}$ is an independent set.

(iv) We continue this way and for $3 < i \leq \lambda_{ab} - 1$ we choose $r_i \in W_i \setminus [r_{i-1}^{-1} N(r_{i-1})]$ such that $r_i^+_1 \in N(a) \cup [r_{i-1}^{-1} N(r_{i-1})]$. If $W_i \cap [r_{i-1}^{-1} N(r_{i-1})] = \emptyset$ we set $r_i = a_i^+$. Following the above method we reach the conclusion that $R := \{r_1, \ldots, r_{\lambda_{ab}}\}$ is an independent set. This is a contradiction to the hypothesis since then $\alpha_{ab} \geq \{|a, b| \cup R| > \lambda_{ab}$.]

We would like to point out that the proof of the above Lemma shows that one can find a Hamiltonian cycle in G in polynomial time if we know one in $dC_k(G)$. However the construction of the closure itself cannot be found in polynomial time as it is well known to be a hard problem to compute the independence number α_{ab}. This is why we provide in section 4 an alternative closure condition which is a relaxation of $P(k)$.

Throughout, $S \subseteq V$ denotes a subset with s vertices.

3 Main results

Theorem 2 The property of being Hamiltonian is n-degree stable.

Proof. Consequence of Lemma 1. ■

The graph G is S-Hamiltonian, $s \leq n - 3$, if it remains Hamiltonian whenever some or all vertices of S are removed. We simply say that it is s-Hamiltonian if we are only interested by the number s instead of the set S of vertices.

Theorem 3 The property of being S-Hamiltonian is $(n + s)$-degree stable.
Proof. For some $W \subseteq S$, set $H := G - W$. By the hypothesis $\alpha_{ab}(G) \leq \lambda_{ab}(G) - s$. Clearly $\alpha_{ab}(H) \leq \alpha_{ab}(G)$ and $\lambda_{ab}(G) \leq \lambda_{ab}(H) + |W|$. Thus $\alpha_{ab}(H) \leq \alpha_{ab}(G) \leq \lambda_{ab}(G) - s \leq \lambda_{ab}(H) + |W| - s$. It follows that $\alpha_{ab}(H) \leq \lambda_{ab}(H)$ since $|W| - s \leq 0$. Therefore H is hamiltonian by Theorem 2. Note that this property is $(n + s - 1)$ - degree stable if S is not an independent set, in which case $\pi_{ab} - \alpha_{ab} \geq 1$ The proof is now complete. \[\square\]

The subgraph $G[S]$ is hamiltonian if G is $V \setminus S$-hamiltonian. Applying Theorem 3 we obtain:

Theorem 4 The property "$G[S]$ is hamiltonian" is $(2n - s)$-degree stable.

We say that G is S-cyclic (S- traceable resp.) if it contains a cycle C (a path resp.) with all vertices of S.

Theorem 5 The property "G is S-cyclic" is n-degree stable.

Proof. Suppose that $(G + ab)$ contains a cycle C such that $S \subseteq V(C)$ but G does not. Then a, b are connected by a path $\pi := a_1 \ldots a_p$ with $a = a_1, b = a_p$, $n \geq p \geq s$. Set $H := G[V(\pi)]$ and $W := V \setminus V(H)$. Clearly $N(a) \cap N(b) \subseteq V(\pi)$ since otherwise H is hamiltonian. Obviously $\alpha_{ab}(H) \leq \alpha_{ab}(G)$. By the hypothesis $\alpha_{ab}(G) \leq \lambda_{ab}(G)$. Thus $\alpha_{ab}(H) \leq \alpha_{ab}(G) \leq \lambda_{ab}(G) = \lambda_{ab}(H)$. Therefore H is hamiltonian by Theorem 2. \[\square\]

A caterpillar is a particular tree which results in a path when its leaves are removed. The spine of the caterpillar is the longest path of it. The graph G is called S-caterpillar spannable if it has a spanning tree that is a caterpillar, whose leaves are the vertices of $S := \{x_1, \ldots, x_s\}$. Suppose that the spine is an $[x_1, x_2]$-path. Let G' be a graph obtained from G by adding a new vertex, v say, that is joined to x_1 and x_2. Then G is S-caterpillar spannable if G' is $(S - \{x_1, x_2\})$-hamiltonian. Applying Theorem 3 to the graph G' we obtain

Theorem 6 Let $S \subseteq V(G)$ with s vertices, $2 \leq s < n$. Then the property "G is S-caterpillar spannable" is $(n + s - 1)$-degree stable.

A set $F \subseteq E$ of edges such that the components of the graph (V, F) are vertex disjoint paths is called F-cyclic (or $|F|$-edge-hamilton) if there exists a cycle that contains F. It is F-traceable if there exists a path that contains F. Applying Theorem 2 to the graph obtained from G by subdividing each edge in F into two, we obtain

Theorem 7 The property "G is F-cyclic with $|F| \leq n - 3$", is $(n + |F|)$-degree stable.

A graph G is defined to be $|F|$-Hamilton-connected if for each pair (x, y) of vertices there is a hamiltonian path with endpoints x, y that contains F. Now G must be $(F \cup xy)$-cyclic and using Theorem 7 we obtain

6
Theorem 8 The property "G is F-Hamilton-connected with |F| ≤ n − 4", is $(n + |F| + 1)$-degree stable.

Let sK_2 be an s-matching, that is, a subgraph with s independent edges.

Theorem 9 Let n, s be positive integers with $s ≤ \frac{n}{2}$. Then the property of containing sK_2 is $(2s - 1)$-degree stable.

Proof. If $G + ab$ contains an sK_2 but G does not, then there exists an $(s-1)$-matching $\{a_1b_1, ..., a_{s-1}b_{s-1}\}$ in G and an s-matching in $G + ab$. For $i \in [1, s - 1]$ we set

$$A := \{a_i\}, B := \{b_i\}, D := V \setminus (A \cup B \cup \{a, b\}),$$

$$M := \{a_ib_i| i \in [1, s - 1]\}, M_i = \{a_i, b_i\} and m_i := |N_{M_i}(a) \cup N_{M_i}(b)|.$$

We label the vertices of A, B so that $a_i \in N(a) \cup N(b)$ whenever $m_i ≥ 1$. An M-augmenting path is a path with an even number of vertices, unsaturated endpoints in $D \cup \{a, b\}$ and whose edges are alternatively in $E - M$ and M. To avoid contradiction, we obviously assume that G contains no M-augmenting path. Moreover $D \cup \{a, b\}$ must be an independent set since otherwise there is an s-matching in G. We shall assume $\alpha_{ab} ≠ \overline{\alpha}_{ab}$ (that is T_{ab} is not an independent set), by Bondy and Chvátal’s result [7].

To distinguish all possible configurations we define the following independent sets: $J_0 := \{i|m_i = 0\}, J_{11} := \{i|m_i = 1 and |N(a_i) \cap \{a, b\}| = 1\}, J_{12} := \{i|m_i = 1 and |N(a_i) \cap \{a, b\}| = 2\}$ and $J_2 := \{i|m_i = 2\}$. If $j \in J_2$ then $d_{M_j}(a) + d_{M_j}(b) = 2$ and either $d_{M_j}(a) = 2$ or $d_{M_j}(b) = 2$ for if $aa_j, bb_j \in E$ then aa_jb_j is an M-augmenting path. These sets form a partition of $J := J_0 \cup J_{11} \cup J_{12} \cup J_2$. We note that

$$\sigma_{ab} = |J_{11}| + 2(|J_{12}| + |J_2|), \quad s = |J| + 1 \quad (1)$$

and $$\overline{\sigma}_{ab} = 2 + |J_{11}| + |J_{12}| + 2|J_0| + |D|. \quad (2)$$

By the hypothesis $\sigma_{ab} + \overline{\sigma}_{ab} = 2 + 2|J| + |J_{12}| + |D| ≥ 2s - 1 + \alpha_{ab}$. On the other hand, we prove that $\alpha_{ab} ≥ 2 + |J_{12}| + |D|$. It suffices to prove that $\{a, b\} \cup \{b_i| i \in J_{12}\} \cup D$ is an independent set. We already know that $\{a, b\} \cup D$ is independent. If $D \neq \emptyset$, choose $x \in D$ and suppose $xb_j \in E$ with $1 \in J_{12}$. Then $a_j \in N(a) \cap N(b)$ and aa_jb_jx is an M-augmenting path. It remains to prove that $bh_{12} \notin E$ if $1, 2 \in J_{12}$. Otherwise $aa_1b_1b_2a_2b$ is an M-augmenting path. Finally we have $\sigma_{ab} + \overline{\sigma}_{ab} ≥ 2s - 1 + \alpha_{ab} ≥ 2s - 1 + 2 + |J_{12}| + |D|$, that is $2|J| ≥ 2s - 1$. This is a contradiction since $|J| = 2(s - 1)$. The proof is now complete.

Theorem 10 Let n, s be positive integers with $s ≤ n$. Then the property "$\alpha(G) ≤ s$" is $(2n - 2s - 1)$-degree stable.

Proof. Suppose that $\alpha(G + ab) ≤ s$ while $\alpha(G) > s$. Then there must exist an independent set $W \cup \{a, b\} \subset V$ with $(s + 1) ≥ 3$ vertices. More precisely
$W \subseteq T$. Now $d(a) + d(b) \leq 2\gamma_{ab} = 2(n - \overline{\pi}_{ab})$. By the hypothesis $d(a) + d(b) + (\overline{\pi}_{ab} - \alpha_{ab}) \geq (2n - 2s - 1)$. It follows that $2(n - \overline{\pi}_{ab}) + (\overline{\pi}_{ab} - \alpha_{ab}) \geq (2n - 2s - 1)$, that is $\overline{\pi}_{ab} + \alpha_{ab} < 2(s + 1)$. On the other hand $\alpha_{ab} \geq |W \cup \{a, b\}| = s + 1$. Moreover $\overline{\pi}_{ab} \geq \alpha_{ab} \geq s + 1$. With this contradiction, Theorem 10 is proved. ■

Theorem 11 Let n, s be positive integers with $s \leq n - 2$. Then the property of being s-connected is $(n + s - \overline{\pi}_{ab})$-(degree stable).

Proof. Suppose that $G + ab$ is s-connected but G is not. Then there exists a set D of $(s - 1)$ vertices such that a and b belong to two distinct components of $G - D$. It follows in particular that $\lambda_{ab} < s$. By the hypothesis $d(a) + d(b) + (\overline{\pi}_{ab} - \alpha_{ab}) \geq (n + s - \overline{\pi}_{ab})$. As $d(a) + d(b) = \gamma_{ab} + \lambda_{ab}$ and $\overline{\pi}_{ab} + \gamma_{ab} = n$ we get $n - \overline{\pi}_{ab} + \lambda_{ab} + (\overline{\pi}_{ab} - \alpha_{ab}) \geq (n + s - \overline{\pi}_{ab})$, that is $\lambda_{ab} - \alpha_{ab} \geq s - \overline{\pi}_{ab}$. As $\lambda_{ab} < s$ we obtain $\alpha_{ab} \leq 1$, contradicting the fact that $\alpha_{ab} \geq 2$. This completes the proof. ■

Note that even if $(\overline{\pi}_{ab} - \alpha_{ab}) = 0$, this result improves Bondy-Chvátal’s result in [7].

Theorem 12 Let n, s be positive integers with $s \leq n - 2$. Then the property of being s-edge-connected is $(n + s - \overline{\pi}_{ab})$-(degree stable).

Proof. Suppose that $G + ab$ is s-edge-connected but G is not. Then there exists a set F of $(s - 1)$ edges such that a and b belong to two distinct components of $G - F$. It follows in particular that $\lambda_{ab} < s$. The remaining of the proof follows that of the preceding Theorem. ■

4 Corollaries

The following results can be easily derived as Corollaries. Let G be a graph of order n, S be a subset of vertices and $s \leq |S|$ be an integer.

Let $c(G)$ denote the circumference of G. The first Corollary follows easily from Theorem 2.

Corollary 1 The property $c(G) \geq s$ is n-degree stable.

The graph G is S-pancyclicable if, for every integer s, with $3 \leq s \leq n$, there exists a cycle C in G such that $|S \cap V(C)| = s$. As usual, G is pancyclic if it contains cycles of all lengths from 3 to n.

Corollary 2 The property "G is S-pancyclicable" is $(n + s - 3)$ - degree stable with $3 \leq s \leq n$.

Proof. Let $R \subseteq S$ be a subset of r vertices, $3 \leq r \leq s$, which is not contained in any cycle C of G. This means that $G - (S \setminus R)$ is not hamiltonian, in other words G is not $(s - r)$-hamiltonian. By Theorem 3, $d_G(a) + d_G(b) + (\overline{\pi}_{ab} - \alpha_{ab}) < n + s - r \leq n + s - 3$, a contradiction to the hypothesis. ■
Corollary 3 The property "G is pancyclic" is \((2n - 3)\) - degree stable.

Proof. By identifying \(S\) and \(V\) in the preceding Corollary, we are done. ■

Corollary 4 The property of being Hamiltonian-connected is \((n+1)\)-degree stable.

Proof. Follows from Theorem 6 with \(s = 2\) or Theorem 8 with \(F = \emptyset\). ■

The graph \(G\) is \(S\) - vertex Hamiltonian-connected if it remains Hamiltonian-connected if \(s\) vertices of \(S\) or less are removed. Using similar arguments as for Theorem 6 we get:

Corollary 5 The property "\(S\)- vertex Hamiltonian-connected" is \((n + s + 1)\)-degree stable.

Applying Theorem 7, we easily get:

Corollary 6 The property of being \(s\)-edge-hamiltonian is \((n + s)\)-degree stable.

Let \(\mu(G)\) be the number of paths that collectively contain the vertices of \(G\).

Corollary 7 The property \(\mu(G) \leq p, 1 \leq p \leq n\) is \((n - p)\)-degree stable.

Proof. Apply Theorem 2 for the graph \(G + pK_1\). ■

The graph \(G\) is called \(S\)-leaf-connected if it has a spanning tree whose leaves are the vertices of \(S\). Thus a graph is 2-leaf-connected if and only if it is Hamilton-connected.

Corollary 8 Let \(S \subset V(G)\) with \(s\) vertices, \(2 \leq s \leq n\). Then the property "\(G\) is \(S\)-leaf-connected" is \((n + s - 1)\) - stable.

Proof. This is a particular case of Theorem 6. ■

4.1 Open Problem

We believe that the following must be true.

Problem 1 Let \(n, s\) be positive integers with \(2 \leq s < n\). Then the property of having an \(s\)-factor is \((n + 2s - 4)\)-degree stable.
5 A polynomial version of the α-degree closure

To improve Bondy-Chvátal’s closure condition we have added $(\pi_{ab} - \alpha_{ab})$ to σ_{ab} in order to define $P(k)$. This can be indeed a large number but α_{ab} is hard to compute. This motivates us to introduce some easy computable upper bounds of α_{ab} (or alternatively lower bounds of $(\pi_{ab} - \alpha_{ab})$).

The first lower bound is based on the matching number ν_{ab} of the graph G_{ab} as it is well known that $\alpha(H) \leq |H| - \nu(H)$ holds for any graph. In particular we have $\alpha_{ab} \leq \pi_{ab} - \nu_{ab}$ if $H = G_{ab}$. It is worth noting that for any subgraph H of G we have $\nu(H) \leq \nu(G)$.

For the second lower bound, we introduce a new invariant of a graph based on the degree sequence of that graph.

Definition 2 Let H be any graph of order n and θ be a nonnegative integer. Set $D_{\theta} := \{x \in V(H) \mid d_{x}(x) \geq \theta\}$. The adjusted maximum degree $\Delta^{\theta}(H)$ is the maximum integer θ such that $|D_{\theta}| \geq \theta$.

In fact, we are mainly interested by this invariant when applied to G_{ab}. Thus we have $\Delta^{\alpha}_{ab} := \max \{\theta \mid |D_{\theta}| \geq \theta\}$ where $D_{\theta} := \{x \in T \mid d_{T}(x) \geq \theta\}$. The next Proposition precises some properties of this new invariant.

Proposition 2 The invariant $\Delta^{\alpha}(G)$ satisfies the following properties:

1. $\Delta^{\alpha}(G)$ does not necessarily correspond to a degree of some vertex of G,
2. $\Delta^{\alpha}(G)$ is well-defined and $0 \leq \delta(G) \leq \Delta^{\alpha}(G) \leq \Delta(G) \leq n - 1$,
3. the invariants $\Delta^{\alpha}(G)$ and $\nu(G)$ are incomparable,
4. for any subgraph H of G with $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$ we have $\Delta^{\alpha}(H) \geq \Delta^{\alpha}(G) - |V(G)\setminus V(H)|$. Similarly $\nu(H) \geq \nu(G) - |V(G)\setminus V(H)|$.
5. $\Delta^{\alpha}(G) = \{|i| + d_{i} > n\}$ where $d_{1} \leq d_{2} \leq \ldots \leq d_{n}$ is the degree sequence of G.
6. $\alpha(G) \leq n - \max \{\nu, \Delta^{\alpha}\}$ and hence $\alpha_{ab}(G) \leq \pi_{ab}(G) - \max \{\nu_{ab}, \Delta^{\alpha}_{ab}\}$.

Proof.
1. For instance, if the degree sequence is $(2, 2, 2, 4, 4, 4)$ then $\Delta^{\alpha} = 3$ since $|D_{3}| \geq 3$, while $|D_{4}| < 4$.
2. Obvious.
3. For instance, if $G = pC_{k}$, $k \geq 3$, $p \geq 1$ then $\delta = \Delta^{\alpha} = \Delta = 2$ and $\nu(G) = p \left[\frac{k}{2}\right]$. Similarly if $G = K_{2}$ then $\delta = \Delta^{\alpha} = \Delta = n - 1$ and $\nu(G) = \left[\frac{n}{2}\right]$.
4. The inequalities are obvious if $V(H) = V(G)$. Otherwise, use a simple induction on $|V(H)|$.
5. Suppose that G is not trivial since otherwise $\Delta^{\alpha}(G) = 0$. Choose $p \in [1, n]$ so that $p := \min \{|i| + d_{i} > n\}$ and set $\theta := \{|i| + d_{i} > n\}$. Clearly $\theta = n + 1 - p$. We claim that $d_{i} \geq \theta$ whenever $i \geq p$. Otherwise suppose $d_{p} < \theta$. Then $\theta = n + 1 - p > d_{p}$, that is $p + d_{p} \leq n$. This contradicts the definition of $p := \min \{|i| + d_{i} > n\}$.
6. Suppose first \(\max \{ \nu, \Delta^o \} = \Delta^o(G) \). Let \(H \) be any component of \(G \) and consider a maximum independent set \(S := \{ x_1, \ldots, x_{\alpha(H)} \} \) of \(H \). We label the vertices of \(H \) so that \(d(x_1) \leq d(x_2) \leq \cdots \leq d(x_{\alpha(H)}) \). Clearly \(d(x_{\alpha(H)}) + |S| \leq |H| \), that is
\[
d(x_{\alpha(H)}) + \alpha(H) \leq |H|.
\]
So \(d_H(x_i) + i \leq n \) must be true for all \(i \leq \alpha(H) \). If, for some \(j > \alpha(H) \) we have \(d_H(x_j) + j > |H| \), then necessarily \(x_j \in V(H) \setminus S \). Therefore \(\{x_j \mid j > \alpha(H) \} \subseteq V(H) \setminus S \), that is \(\Delta^o(H) = |\{x_j \mid j > \alpha(H) \}| \leq |H| - \alpha(H) \) or \(\alpha(H) \leq |H| - \Delta^o(H) \). Applied to the graph \(G_{ab} \), this inequality becomes \(\alpha_{ab} + \Delta^o_{ab} \leq \pi_{ab} \).
It is well known that \(\alpha(G) + \nu \leq n \) holds for any graph. Therefore \(\alpha(G) \leq n - \max \{ \nu, \Delta^o \} \) holds again if \(\max \{ \nu, \Delta^o \} = \nu \).

We note that the proof of 6 of Proposition 2 suggests an interesting result in itself, that is:

Proposition 3 Let \(G \) with degree sequence \(d_1 \leq \ldots \leq d_n \). Then \(d_n + \alpha \leq n \).

Moreover Proposition 2 suggests an alternative condition for \(P(k) \), namely:

Definition 3 Let \(P \) be a property defined for all graphs \(G \) of order \(n \) and let \(k \) be an integer. Let \(a, b \) be two nonadjacent vertices satisfying the condition
\[
P^*(k) : \quad \pi_{ab} \leq \lambda_{ab} + \max(\nu_{ab}, \Delta^0_{ab}) + (n - k) \Leftrightarrow \sigma_{ab} + \max(\nu_{ab}, \Delta^0_{ab}) \geq k. \quad (**)
\]
Then \(P \) is \(k \)-alpha degree stable if whenever \(G + ab \) has property \(P \) and \(P^*(k) \) holds then \(G \) itself has property \(P \). We simply denote by \(dC^*_k(G) \) the associated \((\alpha \text{-degree closure}) \).

The graph \(dC^*_k(G) \) is then obtained from \(G \) by recursively joining pairs of nonadjacent vertices \(a, b \) for which \((** \text{ holds}) \) until no such pair remains.

Unlike \(dC_k(G) \), the closure graph \(dC^*_k(G) \) can be constructed in polynomial time. Obviously, the main results given in section 3 remain true with the new definition of \(P(k) \).

Also with the following Proposition we obtain a surprising result involving the main closure condition of Broersma and Schiermeyer [8].

Proposition 4 Let \((a, b) \) be a pair of nonadjacent vertices of a graph \(G \). Suppose \(T \neq \emptyset \) and let \(d_T(x) \) denote the degree of \(x \in T \) with respect to \(G \) \(\Gamma_{ab} = |N(a) \cup N(b) \cup N(x)| \). Then
\[
|\{x \in T \mid \gamma_{abx} \geq n - \lambda_{ab} \}| \geq \pi_{ab} - \lambda_{ab} \Rightarrow \quad (3)
\]
\[
\pi_{ab} \leq \lambda_{ab} + \Delta^0_{ab} \Rightarrow \quad (4)
\]
\[
\alpha_{ab} \leq \lambda_{ab}. \quad (5)
\]

Note that \(\pi_{ab} \leq \lambda_{ab} + \Delta^0_{ab} \) is equivalent to \(\sigma_{ab} + \Delta^0_{ab} \geq n \).
Proof. We first note that $\gamma_{abz} \geq n - \lambda_{ab} \iff d_T(x) \geq \pi_{ab} - \lambda_{ab}$ since $\pi_{ab} = n - \gamma_{ab}$ and $\gamma_{abz} = \gamma_{ab} + d_T(x)$. Therefore $|\{x \in T | \gamma_{abz} \geq n - \lambda_{ab}\}| \geq |\pi_{ab} - \lambda_{ab}| \geq \pi_{ab} - \lambda_{ab}$. By the definition, $\Delta_{ab}^o \geq |\{x \in T | d_T(x) \geq \pi_{ab} - \lambda_{ab}\}|$ and hence the Broersma-Schiermeyer’s inequality becomes $\Delta_{ab}^o \geq \pi_{ab} - \lambda_{ab}$. This proves (4). By 6. of Proposition 2 $\alpha_{ab} + \Delta_{ab}^o \leq \pi_{ab}$. This completes the proof of the above Proposition. ■

In other words, the main part of Theorem 2.1 [8] can be restated as follows:

Theorem 13 Let u and v be two nonadjacent vertices of a graph G of order $n \geq 3$. If $d(u) + d(v) + \Delta_{uv} \geq n$ then G is hamiltonian if and only if $G + uv$ is hamiltonian.

Acknowledgement 1 The author would like to thank the referees for their helpful comments.

References

