“On nontrivial solution for a quasilinear elliptic system involving variable exponents via a sub-supersolution method”

Jean VELIN
Maître de Conférences
On nontrivial Solution for a quasilinear elliptic system involving variable exponents via a sub-supersolution method

Jean Vélin *

Abstract

In this paper, we present some existence results concerning in a typical \((p(x), q(x))\)-gradient elliptic system with changing sign. We construct a pair of sub-super solutions. The existence of a positive and bounded solution involves.

Key Words: Sub-supersolutions, \(p(x)\)-Laplacian, minimization.

AMS Classification: 35J20, 35J35, 35J45, 35J50, 35J60, 35J70.

1 Introduction

During the recent decade, a numerous of papers have been devoted to the study of problems with variable exponent. These problems involving the \(p(x)\)-Laplacian operator arise in the modeling of electrorheological fluids (see [18]) and image restorations among other problems in physics and engineering. \(p(x)\)-laplace equations also arise from elastic mechanics [22].

Also, these equations or systems governed by \(p(x)\)-Laplacian rise many mathematical difficulty respect with the classical \(p\)-Laplacian operator. It well known that \(p(x)\)-Laplacian operator is more complicated than the classical \(p\)-Laplacian operator. Thank to the recent development of the theory of variable exponent Lebesgue and Sobolev spaces, an extensive literature has appeared on solving \(p(x)\)-Laplacian equation. For problem involving systems of equations like

\[
\begin{aligned}
-\Delta_{p(x)}u &= B_1(x, u, v) \\
-\Delta_{q(x)}v &= B_2(x, u, v).
\end{aligned}
\]

*Department of Mathematic and Computer, Laboratory CEREGMIA, University of Antilles-Guyane, Campus de Fouillole, 97159 Pointe-à-Pitre GUADELOUPE (FWI). E-mails: jean.velin@univ-ag.fr
mixed with Dirichlet boundary conditions have been investigated. For instance, weak solutions of such systems have been obtained more recently. We can cite Diening and Ruzicka. In the case \(p(\cdot) = q(\cdot) \), Zhang [20] establishes results by considering \(B_1(x, u, v) = f(v) \) and \(B_2(x, u, v) = g(u) \). Other results can also be consulted in [21].

The case \(p(\cdot) \neq q(\cdot) \) has been investigated by [1] when \(\Omega \) is a ball in \(\mathbb{R}^N \). These authors prove the existence of a positive weak solution by considering \(p \) of class \(C^1(\Omega) \), \(B_1(x, u, v) = \lambda (h(x)a(u) + f(v)) \) and \(B_2(x, u, v) = \lambda (h(x)b(v) + f(u)) \).

The \((p(x), q(x))\)-gradient elliptic system has been considered by El Hamidi in [3]. More precisely, when \(B_1(x, u, v) = \frac{\partial F}{\partial u}(x, u, v) \) and \(B_2(x, u, v) = \frac{\partial F}{\partial v}(x, u, v) \), \(F \) has polynomial growth, the author shows there exists at least one weak solution in \(W_0^{1,p(x)}(\Omega) \). When \(F \) is even in the second and the third variable, the author shows that the problem admits an infinitely many weak solutions in \(W_0^{1,p(x)}(\Omega) \). Others variants of the structure like (1.1) have been considered. One can cited X. Xu and Y. An [19], Ogras, Mashiyev, Avci and Yucedag, [17], Liu and Shi [14].

Recently, the system (1.1) has been considered with \((p(x), q(x))\)-gradient structure i.e \(B_1(x, u, v) = \frac{\partial F}{\partial u}(x, u, v) \) and \(B_2(x, u, v) = \frac{\partial F}{\partial v}(x, u, v) \), avec \(F(x, u, v) = c(x)|u|^{\alpha+1}v^{\beta+1} \). Particularly, nonexistence and existence results have been obtained. For instance, for \(\alpha, \beta, p^-, q^- \) and \(N \) such that
\[
\frac{(\alpha + 1) N - p^-}{Np^-} + (\beta + 1) \frac{N - q^-}{Nq^-} < 1 \text{ and } \frac{\alpha + 1}{p^-} + \frac{\beta + 1}{q^-} - 1 > 0,
\]
an existence result of positive solution have been established by using a fibering method.

In the present paper, we treat about the system (1.1) with the structure
\[
F(x, u, v) = c(x)|u|^{\alpha+1}v^{\beta+1}.
\]
In this case, (1.1) becomes
\[
\begin{align*}
-\Delta_{p(x)} u &= c(x)u|u|^{\alpha-1}|v|^\beta+1 & \text{in } \Omega \\
-\Delta_{q(x)} u &= c(x)|u|^{\alpha+1}v^{\beta-1} & \text{in } \Omega \\
u = v = 0 & \text{on } \partial \Omega.
\end{align*}
\]

By using a sub-super solution method, we deal with the case \(\frac{\alpha + 1}{p^-} + \frac{\beta + 1}{q^-} - 1 < 0 \). After constructing respectively a super-solution \((u^0, v^0)\) and a sub-solution \((u_0, v_0)\), we show that the problem admits at least a positive solution \((u^*, v^*)\) such that \(u_0 \leq u^* \leq u^0 \) and \(v_0 \leq v^* \leq v^0 \).

The purpose of the problem is done above. Let us announce the organization convened in this paper:

- The first section is devoted to recall the main material needed for establishing of our results.
In the second section, we construct a pair of super-solution and sub-solution for the system.

In the third section, we associate to a truncated system which we establish the existence of a solution via a minimizing approach.

In the last section, we establish that the solution is located in $[u_0, u^0] \times [v_0, v^0]$.

2 Preliminaries, notation

2.1 Some results on Lebesgue and Sobolev spaces

In this section, and throughout the study, we recall some definitions and properties on the generalized Lebesgue space $L^p(x)(\Omega)$ and generalized Sobolev spaces $W^{1,p}(x)(\Omega)$. $\Omega \subset \mathbb{R}^N$ is an open set. For more details, the reader can consult for instance [2, 5, 7, 8, 11, 12, 13, 15, 16].

The generalized Lebesgue space $L^p(x)(\Omega)$ consists in all measurable functions u defined on Ω for which the $p(x)$-modular

$$\rho_{p(\cdot)}(u) = \int_{\Omega} |u(x)|^{p(x)} \, dx$$

is finite. The Luxemburg norm on this space is defined as:

$$\|u\|_{L^p(x)(\Omega)} = \inf \{ \lambda > 0; \rho_{p(\cdot)}(u) = \int_{\Omega} \frac{|u(x)|^{p(x)}}{\lambda} \, dx \leq 1 \}.$$

Equipped with this norm, $L^p(x)(\Omega)$ is a Banach space.

If $p(x)$ is constant, $L^p(x)(\Omega)$ is reduced to the standard Lebesgue space.

For given $p \in L^\infty(\Omega)$, we define the conjugate function $p'(x)$ as

$$p'(x) = \frac{p(x)}{p(x) - 1}.$$

The following results show the close relation between the convex modular $\rho_{p(\cdot)}$ and the norm $\|\cdot\|_{L^p(\cdot)(\Omega)}$.

Let us recall main results on generalized Lebesgue spaces. We start by

Proposition 2.1 Let $p \in L^\infty(\Omega)$.

1. If $u \in L^p(\cdot)(\Omega)$ then $\|u\|_{L^p(\cdot)(\Omega)} = a \iff \varphi\left(\frac{u}{a}\right) = 1$

2. $\|u\|_{L^{p(\cdot)}(\Omega)} < 1 (=1, >1) \iff \varphi_{p(\cdot)}(u) < 1 (=1, >1)$
3. If \(\|u\|_{L^p(\cdot)} > 1 \) then \(\|u\|_{L^{p_+}(\cdot)}^{p_+} \leq q_p(\cdot)(u) \leq \|u\|_{L^{p_+}(\cdot)}^{p_-} \)

4. If \(\|u\|_{L^p(\cdot)} < 1 \) then \(\|u\|_{L^{p_+}(\cdot)}^{p_+} \leq q_p(\cdot)(u) \leq \|u\|_{L^{p_+}(\cdot)}^{p_-} \)

Proposition 2.2 \([13, 5]\) Let \(p \in L^\infty_+ (\Omega) \), \((u_n) \subset L^{p(\cdot)}(\Omega) \) and \(u \in L^{p(\cdot)}(\Omega) \).

The following assertions are equivalent:

1. \(\lim_{n \to +\infty} \|u - u_n\|_{L^{p(\cdot)}} = 0 \)
2. \(\lim_{n \to +\infty} q_{p(\cdot)}(u - u_n) = 0 \).

Theorem 2.1 (see\([5, 6, 16]\)). Consider \(p, q, r \in L^\infty_+ (\Omega) \), \(u \in L^{q(\cdot)}(\Omega) \) et \(v \in L^{r(\cdot)}(\Omega) \) such that:

\[
\frac{1}{p(x)} + \frac{1}{q(x)} = \frac{1}{r(x)} \quad e. \ a \ in \ \Omega
\]

then

\[
\|uv\|_{L^{r(\cdot)}(\Omega)} \leq \left[\frac{1}{(p/r)_-} + \frac{1}{(q/r)_-} \right] \|u\|_{L^{q(\cdot)}(\Omega)} \|v\|_{L^{r(\cdot)}(\Omega)}
\]

for all \(u \in L^{q(\cdot)}(\Omega) \), \(v \in L^{r(\cdot)}(\Omega) \). It is immediate to make this remark

Remark 1 Let \(p \in L^\infty_+ (\Omega) \) and let \(p' : \Omega \to [1, +\infty[\) be the conjugate function of \(p \).

There is a constant \(C_p > 0 \) such that:

\[
\int_\Omega |uv| \leq C_p \|u\|_{L^{p(\cdot)}} \|v\|_{L^{p'(\cdot)}}
\]

for all \(u \in L^{p(\cdot)}(\Omega) \), \(v \in L^{p'(\cdot)}(\Omega) \).

We also have the following imbedding theorem and we refer the reader to Kovacik and Rokosnik\([13]\), Fan and Zhao\([5]\)

Proposition 2.3 \([13]\) Let \(\Omega \subset \mathbb{R}^N \) be a bounded open set and let \(p, q \in L^\infty_+ (\Omega) \).

If \(p(x) \leq q(x) \ a.e \ in \ \Omega \), then \(L^{q(\cdot)}(\Omega) \hookrightarrow L^{p(\cdot)}(\Omega) \).

Now, we recall main results about generalized Sobolev space. For any \(p \in L^\infty_+ (\Omega) \) and \(m \in \mathbb{N}^* \), we define

\[
W^{m,p(\cdot)}(\Omega) = \{ u \in L^{p(\cdot)}(\Omega) : D^\alpha u \in L^{p(\cdot)}(\Omega) \text{pour tout } |\alpha| \leq m \},
\]

\[
\|u\|_{m,p(\cdot)} = \sum_{|\alpha| \leq m} \|D^\alpha u\|_{L^{p(\cdot)}(\Omega)}
\]

The pair \((W^{m,p(\cdot)}(\Omega), \|\cdot\|_{m,p(\cdot)})\) is a separable Banach space (reflexive if \(p_- > 1 \)) which is called generalized Sobolev space (also known as Sobolev space with variable exponent). We will denote by \(W^{1,p(\cdot)}_0(\Omega) \) the closure of \(C^\infty_0(\Omega) \) in \(W^{m,p(\cdot)}(\Omega) \).
Proposition 2.4 Let $\Omega \subset \mathbb{R}^N$ be a bounded open set and let $p, q \in L_+^{\infty}(\Omega)$. If

$$p(x) \leq q(x) \ a.e \ in \ \Omega,$$

then

$$W^{1,q(.)}(\Omega) \hookrightarrow W^{1,p(.)}(\Omega).$$

Based on the $p(.) - \text{Capacity}$ notion, we also have:

Proposition 2.5 [10] Let $1 < q^-, p^+ < +\infty$ and $p(x) \geq q(x)$ for almost every $x \in \mathbb{R}^N$. Assume that $\Omega \in \mathbb{R}^N$ is a bounded open set. Then

$$W_0^{1,p(.)}(\Omega) \hookrightarrow W_0^{1,pl(.)}(\Omega).$$

Moreover, the norm of the embedding operator does not exceed $1 + |\Omega|.$

Definition 2.1 We say that a function $p : A \to \mathbb{R}$ is ln-Hölder continuous on A provided that there exists a constant $C > 0$ such that

$$|p(x) - p(y)| \leq \frac{C}{-\ln |x - y|}$$

for all $x, y \in A$, $|x - y| \leq \frac{1}{2}.$

The following density result holds.

Theorem 2.2 Let $\Omega \subset \mathbb{R}^N$ be a bounded open set with Lipschitz boundary and $p \in L_+^{\infty}$. If p is ln- Hölder continuous on Ω, then $C^\infty(\Omega)$ is dense in $W^{1,p(.)}(\Omega)$.

Theorem 2.3 Let $\Omega \subset \mathbb{R}^N$ be a bounded open set with Lipschitz boundary and let $p \in C(\Omega)$ be a function which satisfies $p- > 1$.

Define the Sobolev conjugate exponent $p^* : \Omega \to \mathbb{R}$ of p

$$p^*(x) = \begin{cases} \frac{Np(x)}{N - p(x)} & \text{if } p(x) < N \\ \infty & \text{if } p(x) \geq N. \end{cases}$$

then the imbedding $W^{m,p(.)}(\Omega) \hookrightarrow L^{q(.)}(\Omega)$ is continuous and holds for every function $q \in C(\Omega)$ which satisfies $1 < q(x) < p^*(x)$ for all $x \in \Omega.$
2.2 Main results

The solvability of problems quasilinear governed by $p(x)$-laplacian can be studied by several approaches like variational method. Among them, we cite the sub-supersolution method. The reader interested by the applications to semilinear and quasilinear elliptic problems governed by the $p(x)$-laplacian can refer to XL. Fan [4] and the references therein, X. Han and G. Dai [9] for a version applied to Kirchhoff type equations. The sub-supersolution principle for $p(x)$-laplacian is based on the properties of $p(x)$-laplace and also from the results obtained in [4], we observe that the general principle of sub-supersolution method for the problem with variable exponent is the same type as in the constant exponent case. An essential prerequisite for the sub-supersolution method is to find a subsolution u_0 and a supersolution v_0 such that $u_0 \leq v_0$.

3 Weak solution, weak super-solution and weak sub-solution for (1.2)

The notation remain the same as above, we set: $B_1(x, u, v) = c(x)|u|^{\alpha-1}|v|^{\beta+1}$ and $B_2(x, u, v) = c(x)|u|^{\alpha+1}|v|^{\beta-1}$.

3.1 Definition

Definition 3.1 $(u^*, v^*) \in W^{1,p(x),q(x)}$ is a weak solution of (1.2) if

$$
\int_\Omega |\nabla u^*|^{p(x)-2} \nabla u^* \nabla w_1 dx + \int_\Omega |\nabla v^*|^{q(x)-2} \nabla v^* \nabla w_2 dx
- \int_\Omega B_1(x, u^*, v^*) w_1 dx - \int_\Omega B_2(x, u^*, v^*) w_2 dx = 0
$$

for any $(w_1, w_2) \in W^{1,p(x),q(x)}$.

Definition 3.2 $[(u_0, v_0), (u_0^0, v_0^0)] \in W^{1,p(x)}_0 (\Omega) \times W^{1,q(x)}_0 (\Omega)$ is a weak supersolution of the Dirichlet problem associated to the system (1.2), if the following condition holds:

$$
\begin{align*}
\Delta_{p(x)} u_0^0 + B_1(x, u_0^0, v_0) &\leq 0 \leq \Delta_{p(x)} u_0 + B_1(x, u_0, v) & \text{in } \Omega, \forall v \in [v_0, v_0^0] \\
\Delta_{q(x)} v_0^0 + B_2(x, u, v_0^0) &\leq 0 \leq \Delta_{p(x)} v_0 + B_2(x, u, v_0) & \text{in } \Omega, \forall u \in [u_0, u_0^0] \\
u_0 \leq u_0^0, \quad v_0 \leq v_0^0 & \quad \text{in } \Omega, \\
u_0^0 \leq u_0, \quad v_0 \leq 0 \leq v_0^0 & \quad \text{on } \partial\Omega.
\end{align*}
$$

Before starting the next section, we need some lemmas.
Lemma 3.1 Assume that $p = p(\|x\|)$ is a radial function. Then, the functionals φ and ϕ defined on $[0, R^0]$ as follow

$$
\varphi(r) = a_p \left[(R^0 - \delta r)^{\mu^0 - 1} + 1 \right], \quad \phi(r) = a_q \left[(R^0 - \delta r)^{\mu^0 - 1} + 1 \right] \tag{3.1}
$$

obey to

$$
\Delta_{p(x)} \varphi(r) + c(x) \varphi |^{\alpha - 1} \phi |^{\beta + 1} \leq 0 \tag{3.2}
$$

where

$$
\inf (a_p, a_q) > \left\{ \frac{R^0}{\delta (\mu^0 - 1)} \right\}, \quad 0 < \delta < 1 \text{ and } 1 < \mu^0 < 2.
$$

Proof. For r such that $0 \leq r \leq R^0$, we take

$$
\varphi(r) = \tilde{a} \left[(R^0 - \delta r)^{\mu^0 - 1} + 1 \right].
$$

From the hypothesis on \tilde{a}, it is clear that φ is a positive C^2 function on $[0, R^0]$. Moreover, we have

$$
\Delta_{p(x)} \varphi(r) = \left[p'(r) \ln(|\varphi'(r)|) + \frac{N - 1}{r} \right] |\varphi'(r)|^{p(r)-2} \varphi'(r) + (p(r)-1) |\varphi'(r)|^{p(r)-2} \varphi''(r).
$$

So on, by computation, for any r such that $0 \leq r \leq R^0$, we get

$$
\varphi'(r) = -\delta (\mu^0 - 1) a_p (R^0 - \delta r)^{\mu^0 - 2},
$$

and

$$
\varphi''(r) = \delta^2 (\mu^0 - 1) (\mu^0 - 2) a_p (R^0 - \delta r)^{\mu^0 - 3}.
$$

We deduce successively:

$$
|\varphi'(r)|^{p(r)-2} = \delta^{p(r)-2} (\mu^0 - 1)^{p(r)-2} a_p^{p(r)-2} (R^0 - \delta r)^{(\mu^0-2)(p(r)-2)},
$$

$$
|\varphi'(r)|^{p(r)-2} \varphi'(r) = -\delta^{p(r)-1} (\mu^0 - 1)^{(p(r)-1) a_p^{p(r)-1} (R^0 - \delta r)^{(\mu^0-2)(p(r)-1)},}
$$

$$
\ln(|\varphi'(r)|) = \ln \left(\delta (\mu^0 - 1) a_p \left\{ (R^0)^{\mu^0 - 2} \right\} + (\mu^0 - 2) \ln \left(1 - \frac{\delta R}{R} \right) \right).
$$

In the right hand of $\Delta_{p(x)} \varphi(r)$, we estimate each of both terms:

1. Estimation of the term $(p(r) - 1) |\varphi'(r)|^{p(r)-2} \varphi''(r)$:

 We have

 $$
 |\varphi'(r)|^{p(r)-2} \varphi''(r) = (\mu^0 - 2) \delta^{p(r)} (\mu^0 - 1)^{p(r)-1} a_p^{p(r)-1} (R^0 - \delta r)^{p(r)-2}(p(r)-1).
 $$

7
So, thank the assumption on \(\mu^0 \), it derives
\[
|\varphi'(r)|^{p(r)-2} \varphi''(r) \leq (\mu^0 - 2) \delta \varphi'(r) (\mu^0 - 1)^{p(r)-1} \tilde{a}^{p(r)-1} R^{(\mu^0-2)(p(r)-1)-1}.
\]
Because \(0 < \delta < 1 \), it follows that
\[
(p(r) - 1) |\varphi'(r)|^{p(r)-2} \varphi''(r) \leq -K_1 \tilde{a}^{p(r)-1}.
\]
where \(K_1 = (p^r - 1)(\mu^0 - 2)\delta \tilde{a}^{p(r)-1} R^{(\mu^0-2)(p(r)-1)-1} \).

2. Estimation of the term
\[
\left| p'(r) \ln(|\varphi'(r)|) + \frac{N - 1}{r} \right| |\varphi'(r)|^{p(r)-2} \varphi'(r).
\]
Before, let us define on \([0, R^0]\) the function \(l \) as follows
\[
l(r) = -p'(r) \left[\ln \left(\delta (\mu^0 - 1) \tilde{a} \{ R^0 \} R^{\mu^0-2} \right) \right] + (\mu^0 - 2) \ln \left(1 - \frac{\delta r}{R^0} \right) |\delta \tilde{a}|^{p(r)-1} (\mu^0 - 1)^{p(r)-1} (R^0 - \delta r) (\mu^0-2)(p(r)-1).
\]
From the hypothesis \(\tilde{a} > \frac{\{ R^0 \}^{2-\mu^0}}{\delta (\mu^0 - 1)} \), we have successively \(\delta (\mu^0 - 1) \tilde{a} \{ R^0 \} R^{\mu^0-2} > 1 \) and so, \(\ln \left(\delta (\mu^0 - 1) \tilde{a} R^0 R^{\mu^0-2} \right) > 0 \). Moreover, remember us that \(1 < \mu < 2 \), the following estimate on \(l(r) \) holds
\[
l(r) \leq - \inf_{0 \leq r \leq R^0} p'(r) \ln \left[\delta (\mu^0 - 1) \tilde{a} \{ R^0 \} R^{\mu^0-2} \right] |\delta \tilde{a}|^{p(r)-1} (\mu^0 - 1)^{p(r)-1} \{ R^0 \} (\mu^0-2)(p(r)-1) \times \sup_{0 \leq r \leq R^0} p'(r) (\mu^0 - 2) \inf_{0 \leq r \leq R^0} \left[\left(1 - \frac{\delta r}{R^0} \right) R^{\mu^0-2}(p(r)-1) \right] \times \\
\ln \left(1 - \frac{\delta r}{R^0} \right) |\delta \tilde{a}|^{p(r)-1} (\mu^0 - 1)^{p(r)-1} \{ R^0 \} (\mu^0-2)(p(r)-1).
\]
We set
\[
K_2 = - \inf_{0 \leq r \leq R^0} p'(r) \ln \left[\delta (\mu^0 - 1) \tilde{a} \{ R^0 \} R^{\mu^0-2} \right] |\delta \tilde{a}|^{p(r)-1} (\mu^0 - 1)^{p(r)-1} \{ R^0 \} (\mu^0-2)(p(r)-1) \times \\
+ \sup_{0 \leq r \leq R^0} p'(r) (\mu^0 - 2) \inf_{0 \leq r \leq R^0} \left[\left(1 - \frac{\delta r}{R^0} \right) R^{\mu^0-2}(p(r)-1) \right] \times \\
\ln \left(1 - \frac{\delta r}{R^0} \right) |\delta \tilde{a}|^{p(r)-1} (\mu^0 - 1)^{p(r)-1} \{ R^0 \} (\mu^0-2)(p(r)-1).
\]
We conclude that
\[
p'(r) \ln(|\varphi'(r)|) |\varphi'(r)|^{p(r)-2} \varphi'(r) \leq -K_2 \tilde{a}^{p(r)-1}.
\]
On other side,
\[
\frac{N-1}{r} |\varphi'(r)|^{p(r)-2} \varphi'(r) = -\frac{N-1}{r} \left[(\mu - 1) \delta \tilde{\alpha}(R^0 - \tilde{r})^{\mu^0 - 2} \right]^{(p(r)-1)} \\
\leq -\frac{N-1}{R^0} \left[(\mu^0 - 1) \delta \{R^0\}^{\mu^0 - 2} \right]^{(p(r)-1)} \tilde{\alpha}^{(p(r)-1)}.
\]

So, setting \(K_3 = \frac{N-1}{R^0} \left[(\mu^0 - 1) \delta \{R^0\}^{\mu^0 - 2} \right]^{(p(r)-1)} \), we obtain
\[
\frac{N-1}{r} |\varphi'(r)|^{p(r)-2} \varphi'(r) \leq -K_3 \tilde{\alpha}^{(p(r)-1)}. \quad (3.5)
\]

Using again the definition (3.1), it follows:
\[
\left[p'(r) \ln(|\varphi'(r)|) + \frac{N-1}{r} \right] |\varphi'(r)|^{p(r)-2} \varphi'(r) \\
= l(r) - \frac{N-1}{r} (\mu^0 - 1)^{(p(r)-1)} \tilde{\alpha}^{(p(r)-1)} (R^0 - \delta r)^{(\mu^0 - 2)(p(r)-1)}.
\]

Thanks to (3.3), (3.4) and (3.5) and denoting as \(K = K_1 + K_2 + K_3 \), thus, for any \(r \) such that \(0 \leq r \leq R \), we obtain:
\[
\Delta_{p(x)} \varphi(r) \leq -K \tilde{\alpha}^{p(r)-1}.
\]

Before continuing, throughout the rest of the paper, let us assume that there is \(R_0 > 0 \) for which \(B(0; R_0) \subset \Omega \). We also distinguish the cases \(c(x) \geq 0 \) and \(c(x) < 0 \).

3.2 \(c(x) \geq 0 \)

Let us do the following hypotheses:

Lemma 3.2 Assume that

1. \(R_0 = \min \left(\text{diam}(\Omega), \frac{(p^+ - 1)\mu^0}{\sup_{\Omega} |p'(r)|} \right) \).
 \[
 (3.6)
 \]

2. There exists a nonnegative constant \(c_1 \) such that \(\forall x \; c(x) > c_1 > 0 \),

3. For any \(r \geq R_0, \; p(r) > 2 \).
For any s real, let ψ_s be the radial function defined on Ω as follow:

$$
\psi_s(r) = \begin{cases}
-\theta_1^{1/p^-(r^\gamma_p - B_s)} & \text{if } 0 \leq r \leq \frac{NR_0}{N+1}, \\
C_s(R_0 - r)^{\mu_s} & \text{if } \frac{NR_0}{N+1} \leq r \leq R_0 \\
0 & \text{if } R_0 \leq r.
\end{cases}
$$

(3.7)

Then, the pair (ψ_p, ψ_q) is such that

$$
\Delta_{p(x)} \psi_p(x) + c(x)\psi_p|^{\alpha-1}\psi_q|^{\beta+1} \geq 0
$$

where

$$
B_p > \frac{\|c\|_{\infty}}{c_1} \left(\frac{NR_0}{N+1} \right)^{\gamma_p}, \quad \gamma_p > \frac{p^-}{p^--1}, \quad \gamma_q > \frac{q^-}{q^--1},
$$

$$
\theta_p \leq \min \left(\frac{1}{\gamma_p} \left(\frac{N+1}{NR_0} \right)^{\gamma_p-1}, \\
\left[\inf_{0 \leq r \leq \frac{NR_0}{N+1}} \left| r^{\gamma_p} - B \right|^{\alpha-1} \left| r^{\gamma_q} - B \right|^{\beta+1} \left(-\|c\|_{\infty} \left(\frac{NR_0}{N+1} \right)^{\gamma_p} + Bc_1 \right) \right]^{-\frac{p^- - 1}{p^-}} \left(\frac{1}{\frac{p^- - 1}{p^-} + \frac{\beta+1}{q^-}} \right) \right),
$$

(3.8)

$$
0 < C_s < \frac{1}{\mu_p R_0^{\mu_p-1}}.
$$

Before starting the proof of this lemma, let us do a remark.

Remark 2 If Ω is the ball $B(0, R_0)$, the hypothesis "There exists $R_0 > 0$, such that for any $r \geq R_0$, $s > 2$. becomes unnecessary. Consequently, we reduce the function ψ_s as follow

$$
\psi_s(r) = \begin{cases}
-\theta_1^{1/p^-}(r^{\gamma_s} - B_s) & \text{if } 0 \leq r \leq \frac{NR_0}{N+1}, \\
C_s(R_0 - r)^{\mu_s} & \text{if } \frac{NR_0}{N+1} \leq r \leq R_0.
\end{cases}
$$

So, in this case, we only suppose $p(r) > 1$.

Proof. Proof of Lemma 4.1. To ease the reading, we deal with the function ψ_p. We recall that

$$
\Delta_{p(x)} \psi_p(r) = \left[p'(r) \ln(|\psi'_p(r)|) + \frac{N-1}{r} \right] |\psi'_p(r)|^{p(r)-2} \psi'_p(r) + (p(r)-1) |\psi'_p(r)|^{p(r)-2} \psi''_p(r).
$$
1. The case \(0 \leq r \leq \frac{NR_0}{N + 1}\).

We fix \(s = p\). Since the definition, \(\psi_p(r) = \theta_p^{1/p} (r^{\gamma_p} - B_p)\), by calculation, it is clear to obtain successively:

\[
p'(r) \ln \left(\left|\psi'_p(r)\right|^p\right) - \psi'_p(r) = -p'(r) \theta_p^{1/p} \gamma_p^{r^{\gamma_p-1}} \ln \theta_p^{1/p} \gamma_p^{r^{\gamma_p-1}} \\
\geq -p'(r) \theta_p^{1/p} \gamma_p^{r^{\gamma_p-1}} \ln \theta_p^{1/p} \gamma_p^{\left(\frac{NR_0}{N + 1}\right)^{\gamma_p-1}} ,
\]

\[
\frac{N - 1}{r} \left|\psi'_p(r)\right|^p \psi'_p(r) = -\frac{N - 1}{r} \theta_p^{1/p} \gamma_p^{r^{\gamma_p-1}} \left|\psi'_p(r)\right|^p \\
\geq -(N - 1) \theta_p^{1/p} \gamma_p \left|\psi'_p(r)\right|^p \left(\frac{NR_0}{N + 1}\right)^{\gamma_p-1} (r^{\gamma_p-1})^{p(r-1)-1}
\]

and

\[
(p(r) - 1) \left|\varphi'(r)\right|^p \varphi''(r) = -(p(r) - 1) \theta_p^{1/p} \gamma_p \left|\varphi'(r)\right|^p \\
\geq -(p(r) - 1) \theta_p^{1/p} \gamma_p \left|\varphi'(r)\right|^p \left(\frac{NR_0}{N + 1}\right)^{\gamma_p-1} (r^{\gamma_p-1})^{p(r-1)-1} \\
\geq -p^+ \theta_p^{1/p} \gamma_p \left|\varphi'(r)\right|^p \left(\frac{NR_0}{N + 1}\right)^{\gamma_p-1} (r^{\gamma_p-1})^{p(r-1)-1} \\
\geq -p^+ \theta_p^{1/p} \gamma_p \left|\varphi'(r)\right|^p \left(\frac{NR_0}{N + 1}\right)^{\gamma_p-1} (r^{\gamma_p-1})^{p(r-1)-1} .
\]

To continue, from the hypothesis on \(\theta_p\), we remark that the term \(\ln \theta_p^{1/p} \gamma_p \left(\frac{NR_0}{N + 1}\right)^{\gamma_p-1}\) is negative. Then, it derives that the term \(-\theta_p^{1/p} \gamma_p^{r^{\gamma_p-1}} \ln \theta_p^{1/p} \gamma_p^{\left(\frac{NR_0}{N + 1}\right)^{\gamma_p-1}}\) is also positive. That means, we get \(p'(r) \left|\psi'_p(r)\right|^p \psi'_p(r) \ln \left|\psi'_p(r)\right| > 0\).

So, taking account of the hypotheses on \(\gamma_p\), it derives that for \(r\) such that \(0 \leq r \leq \frac{NR_0}{N + 1}\), the following estimates holds:

\[
\Delta_p(x) \psi_p \geq - \left(N + p^+\right) \theta_p^{-} \gamma_p \left|\psi'_p(r)\right|^p \left(\frac{NR}{N + 1}\right)^{\gamma_p-1} (r^{\gamma_p-1})^{p(r-1)-1} .
\]
Moreover, it follows that
\[
\Delta_p(x) \psi_p(\|x\|) \geq (\frac{\alpha}{\alpha + 2 + \epsilon}) \left\{ -\frac{v - 1}{\alpha + 2 + \epsilon} \right\} (N + p^+) \gamma p^{-1} \left(\frac{NR}{N + 1} \right)^{(\gamma)(p - 1) - 1} + \mathop{\inf}_{0 \leq r \leq \frac{NR}{N + 1}} \left| r^{\gamma} - B \right|^{\alpha - 1} \left| r^{\gamma} - B \right|^{\beta + 1} \left(-\|c\|_{\infty} \left(\frac{NR}{N + 1} \right)^{\gamma} + Bc_1 \right). \]

2. The case \(\frac{N^2}{N + 1} \leq r \leq R_0 \) Here, from the definition (3.7), obviously we get \(\psi'_p(r) = -C\mu_p (R_0 - r)^{p - 1} \) and \(\psi''_p(r) = C\mu_p (\mu_p - 1) (R_0 - r)^{p - 2} \). Hence, it follows
\[
p'(r) \ln \left| \frac{\psi'_p(r)}{\psi''_p(r)} \right|^{p(r) - 2} \psi'(r) = -p'(r) \left| C\mu_p (R_0 - r)^{p - 1} \right|^{p(r) - 1} \ln \left| C\mu_p (R_0 - r)^{p - 1} \right|
\]
\[
\geq -p'(r) \left\{ C\mu_p R_0^{\mu_p - 1} \right\}^{p(r) - 1} \ln \left| C\mu_p R_0^{\mu_p - 1} \right|.
\]
Remember us the assumption \(0 < C < \frac{1}{\mu_p R_0^{\mu_p - 1}} \), we conclude that
\(p'(r) \ln \left| \psi'(r) \right| \left| \psi''_p(r) \right|^{p(r) - 2} \psi'(r) > 0 \).

To end, by taking \(\mu_p = \frac{p^+}{p - 1} \), the term \(\frac{N - 1}{r} \left| \psi'(r) \right|^{p(r) - 2} \psi'(r) \) is estimated as follow:
\[
\frac{N - 1}{r} \left| \psi'(r) \right|^{p(r) - 2} \psi'(r) \geq -\frac{N - 1}{N} \left(C\mu_p (R_0 - r)^{p - 1} (\mu_p - 1) (p - 1) \right)^{-1}
\]
\[
\geq -\frac{N - 1}{N} \left(C\mu_p (R_0 - r)^{p - 1} (\mu_p - 1) (p - 1) \right)^{-1}
\]
\[
\geq -\frac{N - 1}{N} \left(C\mu_p (R_0 - r)^{p - 1} (\mu_p - 1) (p - 1) \right)^{-1}.
\]

The last term \((p(r) - 1) \left| \psi'(r) \right|^{p(r) - 2} \psi''(r) \) is estimated as
\((p(r) - 1) \left| \psi'(r) \right|^{p(r) - 2} \psi''(r) \geq C\mu_p (R_0 - r)^{p(r) - 1} (\mu_p - 1) (R_0 - r)^{p(r) - 1} \).

Indeed, from the definition (3.7), \(u_0 \) and \(v_0 \) are nonnegative on \(\left[\frac{NR_0}{N + 1}, R_0 \right] \), moreover \(c(x) \) is also nonnegative, we conclude that
\[
\Delta_p(x) \psi_p(\|x\|) \geq C\mu_p (R_0 - r)^{p(r) - 1} (\mu_p - 1) (p(r) - 1) \left(\frac{N - 1}{N} \right)
\]
\[
\geq \frac{C\mu_p (R_0 - r)^{p(r) - 1} (\mu_p - 1) (p(r) - 1) \left(\frac{N - 1}{N} \right)}{N}.
\]
Finally, we have for any \(x \) satisfying \(\frac{NR_0}{N+1} \leq r = \|x\| \leq R_0 \),
\[
\Delta_p(x)\psi_p(||x||) + c(x)\psi_p(|||x|||\psi_p(||x||))^{\alpha-1}|\psi_q(||x||)|^{\beta+1} \geq 0.
\]

3. \(R_0 \leq r \) Using again (3.7), it is obvious to get
\[
\Delta_p(x)\psi_p(||x||) + c(x)\psi_p(|||x|||\psi_p(||x||))^{\alpha-1}|\psi_q(||x||)|^{\beta+1} \geq 0.
\]

\[\blacksquare\]

3.3 \(c(x) < 0 \)

Lemma 3.3 Let \(c(x) \leq 0 \). For \(p > 1 \), let \(\psi_p \) defined in \([0, R_0]\):
\[
\psi_p(r) = \begin{cases}
-\varepsilon^{1/p^p} (R_0 - r)^{\sigma_p} & \text{if } 0 \leq r < R_0, \\
0 & \text{if } R_0 \leq r.
\end{cases}
\] (3.9)

Assume
\[
\begin{cases}
p' > 0, \text{ in } [r, R_0], \\
\exists \nu_0 > 0, \exists a > 1; \forall r > R_0 - \nu_0, \\
p(r) = 1 + o((R_0 - r)^a).
\end{cases}
\] (3.10)

\[
\sigma_p \geq \frac{p}{p' - 1},
\] (3.11)

\[
0 < \varepsilon < \min(\varepsilon_1, \varepsilon_2, \varepsilon_3),
\] (3.12)

where
\[
\varepsilon_1 = \left(\frac{1}{\sigma R_0^{\sigma_p - 1}} \right)^{p'}, \quad \varepsilon_2 = \left[-\frac{\nu_0^{-1}(p^p - 1)(\sigma_p - 1)}{\inf_{0 \leq r \leq R_0} p'(r)} \right]^{p'}, \quad \varepsilon_3 = \left[-\frac{\sigma_p - 1}{\inf_{0 \leq r \leq R_0} p'(r)} \right]^{p'}.
\]

then \(\psi_p \) obeys to the properties
\[
\Delta_p(x)\psi_p(||x||) + c(x)\psi_p(|||x|||\psi_p(||x||))^{\alpha-1}|\psi_q(||x||)|^{\beta+1} > 0.
\] (3.13)

\textbf{Proof.} Taking account of the definition of the function \(\psi_p \), we process similarly to the above section. That means, we claim that the properties remains valid within \(0 \leq r \leq R_0 \) as well as to \(R_0 < r \). Indeed,
1. \(0 \leq r < R_0 \)

After some easy calculations, we have:

\[
\psi_p^{(r)}(r) = \varepsilon^{1/p - \sigma_p} (R_0 - r)^{\sigma_p - 1},
\]

\[
\psi_p^{(r)}(r) = -\varepsilon^{1/p - \sigma_p}(\sigma_p - 1) (R_0 - r)^{\sigma_p - 2}.
\]

Using the definition of the \(p(x) \)-Laplace operator \(-\Delta_p(x)\), it follows

\[
\Delta_p(x)\psi_p(r) = \varepsilon^{\frac{p(r) - 1}{p(r)}} \left(T_{\varepsilon,1}(r) + T_2(r) + T_3(r) \right)
\]

where,

\[
T_{\varepsilon,1}(r) = -p'(r)\sigma_p^{p(r) - 1} (R_0 - r)^{(p(r) - 1)(\sigma_p - 1)} \ln \left(\frac{1}{p(r)^{\sigma_p} (R_0 - r)^{\sigma_p - 1}} \right), \quad 0 \leq r < R_0,
\]

\[
T_{\varepsilon,1} = \begin{cases} 0 & r = R_0, \end{cases}
\]

\[
T_2(r) = \frac{N - 1}{r} \sigma_p^{p(r) - 1} (R_0 - r)^{(p(r) - 1)(\sigma_p - 1)},
\]

\[
T_3(r) = - (p(r) - 1)\sigma_p^{p(r) - 1}(\sigma_p - 1) (R_0 - r)^{(p(r) - 1)(\sigma_p - 1)} - 1.
\]

Let us notice from the hypotheses on \(\sigma_p \) that for any \(0 \leq r \leq R_0 \), \((p(r) - 1)(\sigma_p - 1) > 1 \) holds. Moreover, it is obvious that

\[
T_3(r) \geq - (p(r) - 1)\sigma_p^{p(r) - 1}(\sigma_p - 1) R_0^{(p(r) - 1)(\sigma_p - 1)}.
\]

It is also immediate to notice that

\[
T_2(r) \geq \frac{N - 1}{R_0} \sigma_p^{p(r) - 1} (R_0 - r)^{(p(r) - 1)(\sigma_p - 1)}.
\]

Setting \(T_\varepsilon(r) = T_{\varepsilon,1}(r) + T_2(r) + T_3(r) \), it results that

\[
T_\varepsilon(r) \geq -p'(r)\sigma_p^{p(r) - 1} (R_0 - r)^{(p(r) - 1)(\sigma_p - 1)} \ln \left(\frac{1}{p(r)^{\sigma_p} (R_0 - r)^{\sigma_p - 1}} \right) + \frac{N - 1}{R_0} \sigma_p^{p(r) - 1} (R_0 - r)^{(p(r) - 1)(\sigma_p - 1)} - (p(r) - 1)\sigma_p^{p(r) - 1}(\sigma_p - 1)
\]

\[
\times (R_0 - r)^{(p(r) - 1)(\sigma_p - 1)}.
\]

Because \(R_0 - r \leq R_0 \), we also have

\[
T_\varepsilon(r) \geq -p'(r)\sigma_p^{p(r) - 1} (R_0 - r)^{(p(r) - 1)(\sigma_p - 1)} \ln \left(\frac{1}{p(r)^{\sigma_p} R_0^{\sigma_p - 1}} \right) + \frac{N - 1}{R_0} \sigma_p^{p(r) - 1} (R_0 - r)^{(p(r) - 1)(\sigma_p - 1)} - (p(r) - 1)\sigma_p^{p(r) - 1}(\sigma_p - 1)
\]

\[
\times (R_0 - r)^{(p(r) - 1)(\sigma_p - 1)}.
\]

14
It derives from hypotheses (3.10), for any \(r \) such that \(\nu_0 < R_0 - r \)

\[
T_\varepsilon(r) \geq \sigma_p^{p(r)-1} (R_0 - r)^{(p(r)-1)(\sigma_p-1)} \left[- \inf_{0 \leq r \leq R_0} p'(r) \sigma_p^{p(r)-1} \ln \left(\frac{1}{\varepsilon} \sigma_p R_0^{\sigma_p-1} \right) - (p-1)\nu_0^{-1} (\sigma_p - 1) \right].
\]

Thank to the hypotheses (3.12), we have \(\ln \left(\frac{1}{\varepsilon} \sigma_p R_0^{\sigma_p-1} \right) < 0 \), consequently, the term \(T_\varepsilon \) remains positive for any \(r \) such that \(R_0 - r > \nu_0 \) and so

\[
\Delta_{p(x)} \psi_p(r) \geq 0.
\]

Now, consider the opposite case (i.e: \(R_0 - r \leq \nu_0 \)).

From the hypotheses (3.10), we have \(\frac{p(r)}{R_0 - r} < 1 \) for \(R_0 - r \leq \nu_0 \),

\[
T_\varepsilon(r) \geq -p'(r)\sigma_p^{p(r)-1} (R_0 - r)^{(p(r)-1)(\sigma_p-1)} \ln \left(\frac{1}{\varepsilon} \sigma_p R_0^{\sigma_p-1} \right) - \frac{p(r)}{R_0 - r} \sigma_p^{p(r)-1} (\sigma_p - 1) (R_0 - r)^{(p(r)-1)(\sigma_p-1)}
\]

\[
\geq \sigma_p^{p(r)-1} (R_0 - r)^{(p(r)-1)(\sigma_p-1)} \left[-p'(r) \ln \left(\frac{1}{\varepsilon} \sigma_p R_0^{\sigma_p-1} \right) - (\sigma_p - 1) \right]
\]

\[
\geq 0.
\]

Then, as above, we retrieve \(T_\varepsilon(r) \geq 0 \) and consequently,

\[
-\Delta_{p(x)} \psi_p(r) \geq 0, \quad \forall r; \quad 0 < R_0 - r \leq \nu_0.
\]

2. \(R_0 \leq r \)

We turn to the definition of \(\psi_p \). It is obvious that

\[
\Delta_{p(x)} \psi_p(r) + c(x) \psi_p(r) \left| \psi_p(r) \right|^{\alpha-1} \left| \psi_q(r) \right|^{\beta+1} = 0.
\]

We conclude that under the assumption \(c(x) \leq 0 \), we obtain

\[
\Delta_{p(x)} \psi_p(r) + c(x) \psi_p(r) \left| \psi_p(r) \right|^{\alpha-1} \left| \psi_q(r) \right|^{\beta+1} \geq 0.
\]

This completes the proof of Lemma 3.3. ■
3.4 Construction of a supersolution

Ω is a bounded domain, so (even if it means doing a translation) there exists $B(O, R^0)$ the ball centered on O and of radius R^0 such that $\Omega \subset B(O, R^0)$. Let $x \in \Omega$, throughout the text, we set $r = \|x\|.$

Proposition 3.1 Assume that

\[
\frac{\alpha + 1}{p^-} + \frac{\beta + 1}{q^-} - 1 < 0.
\]

Let (u^0, v^0) be defined for any $x \in \Omega$ such that $0 \leq \|x\| \leq R^0$ as follow:

\[
u^0(x) = \theta^{1/p^-} \left([R^0 - \delta r]^{\mu_0 - 1} + 1\right), \quad v^0(x) = \theta^{1/q^-} \left([R^0 - \delta r]^{\mu_0 - 1} + 1\right),
\]

where $0 < \delta < 1.$ Then, there exists θ^0 depending on $\mu_0, R^0, p, q, \delta, N, c$ such that for any $\theta \geq \theta^0$,

\[
\Delta_{\mu(x)} u^0(x) + c(x)u^0(x)|u^0(x)|^{\alpha-1}|v^0(x)|^{\beta+1} \leq 0. \quad (3.14)
\]

Proof.

1. Some notation used in the proof of Lemma 3.1 remain the same here. Applying Lemma 3.1 with $\tilde{a} = \theta^{1/p^-}.$ We take $u^0(x) = \varphi(r),$ so we get for any $0 \leq r \leq R$

\[
\Delta_{\mu(x)} u^0(x) + c(x)u^0(x) |u^0(x)|^{\alpha-1} |v^0(x)|^{\beta+1}
\]

\[
\leq -\mathcal{K} \theta^{\frac{\mu_0 - 1}{p^-}} + \|c\|_\infty \frac{\theta^{\frac{\mu_0}{p^-}}}{r} \left(\{R^0 - \delta r\}^{\mu_0 - 1} + 1\right)^{\alpha} \frac{\beta + 1}{q^-} \left(\{R^0 - \delta r\}^{\mu_0 - 1} + 1\right)^{\beta + 1}
\]

\[
\leq -\mathcal{K} \theta^{\frac{\mu_0 - 1}{p^-}} + \|c\|_\infty \frac{\theta^{\frac{\mu_0}{p^-}} + \frac{\beta + 1}{q^-}}{r} \left(\{R^0\}^{\mu_0 - 1} + 1\right)^{\alpha} \left(\{R^0\}^{\mu_0 - 1} + 1\right)^{\beta + 1}
\]

\[
\leq -\mathcal{K} \theta^{\frac{\mu_0 - 1}{p^-}} + \mathcal{K} \theta^{\frac{\mu_0}{p^-} + \frac{\beta + 1}{q^-}},
\]

where

\[
\mathcal{K} = \|c\|_\infty \left(\{R^0\}^{\mu_0 - 1} + 1\right)^{\alpha} \left(\{R^0\}^{\mu_0 - 1} + 1\right)^{\beta + 1}.
\]

Else, it follows:

\[
\Delta_{\mu(x)} u^0(x) + c(x)u^0(x) |u^0(x)|^{\alpha-1} |v^0(x)|^{\beta+1} \leq \theta^{\frac{\mu_0}{p^-} + \frac{\beta + 1}{q^-}} \left[\mathcal{K} - \mathcal{K} \theta^{\frac{\mu_0 - 1}{p^-}} \left(\frac{\mu_0}{p^-} + \frac{\beta + 1}{q^-}\right)\right].
\]

(3.15)

Because the hypothesis $\frac{\alpha + 1}{p^-} + \frac{\beta + 1}{q^-} < 1$ holds, let us set $\theta^0 = \left(\frac{\mathcal{K}}{\mathcal{K}} \theta^{\frac{\mu_0 - 1}{p^-}} \left(\frac{\mu_0}{p^-} + \frac{\beta + 1}{q^-}\right)\right).$

For any $\theta \geq \theta^0,$ the right hand in (3.15) remains nonnegative.
4 Existence of a subsolution

Proposition 4.1 Under the hypothesis of Lemma 4.1. Let C^- and C^+ the sets defined as follow:

\[C^- = \{ x \in \Omega; \ c(x) < 0 \}, \ C^+ = \{ x \in \Omega; \ c(x) \geq 0 \}. \]

Let u_0 and v_0 the functions defined as follow:

\[u_0(x) = \varphi_p(\|x\|) \mathbb{1}_{C^+}(x) + \varphi_q(\|x\|) \mathbb{1}_{C^-}(x), \ v_0(x) = \varphi_q(\|x\|) \mathbb{1}_{C^+}(x) + \varphi_q(\|x\|) \mathbb{1}_{C^-}(x). \]

the pair (u_0, v_0) obeys to

\[\Delta_p(u_0(x)) + c(x)u_0(x) |u_0(x)|^{\alpha-1} |v_0(x)|^{\beta+1} \geq 0, \ \forall x \in \Omega. \] (4.1)

Proof. This result derives to Lemma 3.2 et 3.3 by considering alternatively the cases $c(x) \geq 0$ and $c(x) < 0$. ■

4.1 A comparison result in Ω

Proposition 4.2 Assume that

\[\theta \geq \left(\frac{\theta_p^{1/p} B_p}{(R^0 - \delta d_0)^{\mu^0-1} + 1} \right)^{p^{-}}. \]

The pair $((u_0, v_0), (u^0, v^0))$ verifies the comparison result

\[0 < u_0(x) \leq u^0(x), \ 0 < v_0(x) \leq v^0(x), \ \forall x \in \Omega. \] (4.2)

Proof. Ω is a bounded open subset of \mathbb{R}^N. Thus, making the assumption the origin O is in Ω, there exists $x_0 \in \partial \Omega$ such that the distance $d(O, x_0) = \max_{x \in \Omega} d(O, x)$. We set $d_0 = d(O, x_0)$. We turn to Proposition 3.1 and Proposition 4.1. Particularly using the definition of u^0. It is clear that

\[\inf_{x \in \Omega} u^0(x) = \varphi(d_0) = \theta^{1/p^-} \left[(R^0 - \delta d_0)^{\mu^0-1} + 1 \right]. \]

On a other side, from Proposition 3.1, Proposition 4.1 and (3.8), we get

\[\sup_{x \in \Omega} u_0(x) = \theta_p^{1/p^-} B_p. \]

We choose θ which as $\theta \geq \left(\frac{\theta_p^{1/p^-} B_p}{(R^0 - \delta d_0)^{\mu^0-1} + 1} \right)^{p^-}$, it is clear that

\[\sup_{x \in \Omega} u_0(x) \leq \inf_{x \in \Omega} u^0(x). \]
Consequently, the following comparison result holds,

\[\forall x \in \Omega, \; u_0(x) \leq u^0(x), \; v_0(x) \leq v^0(x). \]

The proof of Proposition 4.2 is complete.

4.2 A sub-supersolution for (1.2)

Proposition 4.3 Let \(\psi_p \) and \(\psi_q \) two functions given by (3.9). Assume that

1. \((\alpha + 1)/p^- + (\beta + 1)/q^- < 1 \),
2. \((u^0, v^0) \) and \((u_0, v_0) \) are defined as in Proposition 3.1 and Proposition 4.1.

Then, the pair \(((u_0, v_0), (u^0, v^0)) \) is a sub-supersolution of (1.2) in the sense of Definition 3.2.

Proof. We process in two step. Indeed, we distinguish the cases \(c(x) \geq 0 \) and \(c(x) < 0 \). Before starting this proof, let us note that it is obvious that \(\varphi \) is \(C^1([0, R^0]) \) and so \(u_0 \) is \(C^1(\bar{\Omega}) \). Then, \(u^0 \) and \(|\nabla u^0| \) are bounded in \(\Omega \). Consequently, \(u^0 \) belongs in \(W^{1,p(x)}(\Omega) \). We conclude that \(u^0(x) = \varphi(r) > 0 \).

Arguing similarly, we also prove that \(v^0(x) = \psi(\|x\|) \) is in \(W^{1,q(x)}(\Omega) \).

1. **Step 1:** \(c(x) \geq 0 \)

 Thanks to Proposition 4.3, we can consider \(v \) fixed as \(v_0 \leq v \leq v^0 \) for any \(x \in \Omega \).

 (a) **The case** \(0 \leq r \leq \frac{NR_0}{N+1} \)

 i. because \(B > \frac{\|c\|_\infty}{c_1} \left(\frac{NR}{N+1} \right)^\gamma \), by considering the definition of \(u^0 \), we deduce that \(u_0(x) \geq 0 \) for any \(x \) such that \(0 \leq \|x\| \leq \frac{NR_0}{N+1} \).

 ii. So, For any \(x \) such that \(0 \leq \|x\| \leq \frac{NR_0}{N+1} \), one side, we have

 \[
 \Delta_{p(x)} u_0(x) + c(x) |u_0|^{\alpha-1}(x) u_0 |v|^{\beta+1} \geq \Delta_{p(x)} u_0 + c(x) (u_0)^{\alpha} (v_0)^{\beta+1} \geq 0
 \]

 and on other side

 \[
 \Delta_{p(x)} u^0 + c(x) |u^0|^{\alpha-1}(x) u^0 |v|^{\beta+1} \leq \Delta_{p(x)} u^0 + c(x) (u^0)^{\alpha} (v^0)^{\beta+1} \leq 0.
 \]
Then, assuming \(c(x) \geq 0 \), for any \(x \) such that \(0 \leq \|x\| \leq \frac{NR_0}{N+1} \), \(u^0, u_0, v^0 \) and \(v_0 \) obey to
\[
\Delta_{p(x)} u^0 + c(x) |u^0|^{\alpha-1} u^0 |v|^{\beta+1} \leq 0 \leq \Delta_{p(x)} u_0 + c(x) |u_0|^{\alpha-1} u_0 |v|^{\beta+1}, \quad \forall v \in [v_0, v^0].
\]

(b) **The case** \(\frac{NR_0}{N+1} \leq r \leq R_0 \) From the definition (3.7), \(u_0 \) and \(v_0 \) are nonnegative on \(\left[\frac{NR_0}{N+1}, R_0 \right] \), moreover \(c(x) \) is also nonnegative, we conclude that
\[
\Delta_{p(x)} u_0(x) + c(x) |u_0|^{\alpha-1} u_0 |v_0(x)|^{\beta+1} \geq \frac{C p(r) \mu_p^{p(r)-1} (R_0 - r) (\mu_p - 1) (p(r)-1) - N - 1}{N}
\]
Finally, we have
\[
\Delta_{p(x)} u_0(x) + c(x) |u_0|^{\alpha-1} u_0 |v_0(x)|^{\beta+1} \geq 0.
\]

Consequently, for any \(x \) satisfying \(\frac{NR_0}{N+1} \leq r = \|x\| \leq R_0 \),
\[
\Delta_{p(x)} u_0 + c(x) |u_0|^{\alpha-1} u_0 |v|^{\beta+1} \geq \Delta_{p(x)} u_0 + c(x) |u_0|^{\alpha-1} u_0 |v_0|^{\beta+1} \geq 0
\]
and then
\[
\Delta_{p(x)} u^0 + c(x) |u^0|^{\alpha-1} u^0 |v|^{\beta+1} \leq \Delta_{p(x)} u^0 + c(x) (u^0)^\alpha (v^0)^{\beta+1} \leq 0.
\]

(c) \(R_0 \leq r \) Using again (3.7), it is obvious to get
\[
\Delta_{p(x)} u_0(x) + c(x) |u_0|^{\alpha-1} u_0 |v_0(x)|^{\beta+1} \geq 0.
\]

Consequently, for any \(x \) such that \(R_0 \leq r = \|x\| \), we have
\[
\Delta_{p(x)} u_0 + c(x) |u_0|^{\alpha-1} u_0 |v|^{\beta+1} \geq 0
\]
and so, for any \(v \in [v_0, v^0] \),
\[
\Delta_{p(x)} u^0 + c(x) |u^0|^{\alpha-1} u^0 |v|^{\beta+1} \leq 0 \leq \Delta_{p(x)} u_0 + c(x) (u_0)^\alpha |v|^{\beta+1}.
\]

2. **Step 2**: \(c(x) < 0 \)

For any \(x \) such that \(0 \leq \|x\| \leq R_0 \) and for any \(v \) fixed in \([v_0, v^0]\)
\[
T(r) \geq \frac{p'(r) \sigma_p^{p(r)-1} (R_0 - r)^{(p(r)-1)(\sigma_p - 1)} \ln \left(\frac{1}{r} \sigma_p (R_0 - r)^{\sigma_p - 1} \right)}{R_0} + \frac{N - 1}{R_0} \sigma_p^{p(r)-1} (R_0 - r)^{(p(r)-1)(\sigma_p - 1) - (p(r) - 1)\sigma_p^{p(r)-1}(\sigma_p - 1)}}
\]

\times \left(R_0 - r \right)^{(p(r)-1)(\sigma_p - 1)-1}.\]
5 A truncated system

We consider the following truncated system:

\[
\Delta_{\rho(x)} u_0 + c(x) u_0 |u_0(x)|^{\alpha-1} |v|^{\beta+1} = \varepsilon \frac{\alpha}{r} T(r) - c \varepsilon \frac{\alpha}{r} (R_0 - r)^{\sigma \alpha} |v|^{\beta+1}.
\]

Taking ε as in (3.12), $T(r)$ is positive. So, assuming $c(x) \leq 0$ here, it follows that for any $v \in [v_0, v_0]$,

\[
\Delta_{\rho(x)} \psi_p (r) + c \psi_p (r) |\psi_p (r)|^{\alpha-1} |\psi_q (r)|^{\beta+1} \geq 0.
\]

By consequently, for any x such that $0 \leq \|x\| \leq R_0$,

\[
\Delta_{\rho(x)} u^0 + c(x) |u^0|^{\alpha-1} u^0 |v|^{\beta+1} \leq \Delta_{\rho(x)} u_0 + c(x) (u_0)^{\alpha} |v|^{\beta+1}, \ \forall v \in [v_0, v_0].
\]

This achieves the proof of Proposition 4.3. ■

We also define the truncated energy functional:

\[
\hat{\Phi}(u, v) = \int_{\Omega} \frac{1}{p(x)} |\nabla u|^{p(x)} \, dx + \int_{\Omega} \frac{1}{q(x)} |\nabla v|^{q(x)} \, dx - \int_{\Omega} \hat{H}(x, u, v) \, dx
\]

where

\[
\hat{H}(x, u, v) = H(x, U, V) - a \int_0^u \gamma_1(x, t) \, dt - b \int_0^u \gamma_2(x, t) \, dt,
\]

\[
H(x, U, V) = c(x) |U|^{\alpha+1} |V|^{\beta+1},
\]

\[
U = u + (u_0 - u)_+ - (u - u^0)_+, \quad V = v + (v_0 - v)_+ - (v - v^0)_+,
\]

\[
\gamma_1(x, u) = -(u_0 - u)^{p-1}_+ + (u - u^0)^{p-1}_+, \quad \gamma_2(x, v) = -(v_0 - v)^{q-1}_+ + (v - v^0)^{q-1}_+.
\]

It is obvious that the associated derivative function $\hat{\Phi}'$ is defined as above:

\[
\langle \hat{\Phi}'(u, v), (w_1, w_2) \rangle_{W^{\alpha}, W} = \int_{\Omega} |\nabla u|^{p(x)-2} \nabla u \nabla w_1 \, dx - \int_{\Omega} \frac{\partial H}{\partial u}(x, u, v) w_1 \, dx
\]

\[
+ \int_{\Omega} |\nabla v|^{q(x)-2} \nabla v \nabla w_2 \, dx - \int_{\Omega} \frac{\partial \hat{H}}{\partial v}(x, u, v) w_2 \, dx,
\]

where the notation $\langle \cdot, \cdot \rangle_{W^{\alpha}, W}$ designates the inner product between W and its associated topological dual W^*.

20
Lemma 5.1 Assume \(a \) and \(b \) verifying
\[
0 < a < \left(2^{p^+-1} p^+ (K c \ diam(\Omega))^{p^-} \right)^{-1},
\]
\[
0 < b < \left(2^{q^+-1} q^+ (K c \ diam(\Omega))^{q^-} \right)^{-1}.
\]

The truncated energy functional defined by (5.2) is bounded below on \(W^{1,p(.)}_{0}(\Omega) \times W^{1,q(.)}_{0}(\Omega) \).

Proof. Before starting, we note that
\[
\frac{\partial \hat{H}}{\partial u}(x, u, v) = \frac{\partial H}{\partial u}(x, U, V) - a \gamma_1(x, u), \quad \frac{\partial \hat{H}}{\partial v}(x, u, v) = \frac{\partial H}{\partial v}(x, U, V) - b \gamma_2(x, v).
\]
So, on
\[
\left| \frac{\partial \hat{H}}{\partial u}(x, u, v) \right| \leq |H(x, U, V)| + a \int_{0}^{\|u\|} |\gamma_1(x, u)| dt + b \int_{0}^{\|u\|} |\gamma_2(x, v)| dt
\]
\[
\leq \|c\|_{\infty} |U|^{\alpha+1} |V|^{\beta+1} + a \int_{0}^{\|u\|} 2^{p^+-1} \left(|u|^p \right) dt
\]
\[
+ b \int_{0}^{\|v\|} 2^{q^+-1} \left(|v|^q \right) dt
\]
\[
\leq \|c\|_{\infty} |U|^{\alpha+1} |V|^{\beta+1} + a 2^{p^+-1} \left(|u|^p \right) + |u|^p
\]
\[
+ b 2^{q^+-1} \left(|v|^q \right) dt.
\]
Moreover, [cf. Lemma 8.1.8 p. 250, [2]] since \(p^- \leq p(x) \), then the embedding \(L^{p(x)}(\Omega) \hookrightarrow L^{p^-}(\Omega) \) is continuous, then there exists \(K \) a positive constant such that
\[
\|u\|_{L^{p^-}(\Omega)} \leq K \|u\|_{L^{p(x)}(\Omega)}.
\]
\[
\int_{\Omega} \left| \frac{\partial \hat{H}}{\partial u}(x, u, v) \right| dx \leq K_1 + 2^{p^+-1} a C_0 \|u\|_{1,p(x)} + 2^{q^+-1} a D_0 \|v\|_{1,q(x)}
\]
\[
+ a 2^{p^+-1} \int_{\Omega} |u|^p dx + b 2^{q^+-1} \int_{\Omega} |v|^q dx
\]
\[
\leq K_1 + 2^{p^+-1} a C_0 \|u\|_{1,p(x)} + 2^{q^+-1} b D_0 \|v\|_{1,q(x)}
\]
\[
+ a 2^{p^+-1} \|u\|_{L^{p^-}(\Omega)} + b 2^{q^+-1} \|v\|_{L^{q^-}(\Omega)}.
\]
By consequently,
\[
\Phi(u) \geq \frac{1}{p^+} \int_{\Omega} |\nabla u|^{p(x)} dx + \frac{1}{q^+} \int_{\Omega} |\nabla v|^{q(x)} dx - K_1 - 2^{p^+-1} a C_0 \|u\|_{1,p(x)}
\]
\[
- 2^{q^+-1} b D_0 \|v\|_{1,q(x)} - a 2^{p^+-1} \rho_p(x) (|u|) + b 2^{q^+-1} \rho_q(x) (|v|)
\]
\[
\geq \frac{1}{p^+} \rho_p(x) (\|u\|) + \frac{1}{q^+} \rho_q(x) (\|v\|) - K_1 - 2^{p^+-1} a C_0 \|u\|_{1,p(x)}
\]
\[
- 2^{q^+-1} b D_0 \|v\|_{1,q(x)} - a 2^{p^+-1} \|u\|_{L^{p^-}(\Omega)} - b 2^{q^+-1} \|v\|_{L^{q^-}(\Omega)}.
\]
Assume p and q belong in $\mathcal{D}^{\log}(\Omega)$ or $p, q \in A$, we have the Poincaré inequalities (cf [2], Theo 8.2.4 p.255)

$$
\|u\|_{L^p(\Omega)} \leq c \text{diam}(\Omega) \|\nabla u\|_{L^p(\Omega)}
$$

$c = \text{cst}(n, c_{\log(p)})$ is a constant depending on n and $c_{\log(p)}$. On the other part, (cf. Corolaire 8.2.5) the norms $\|\nabla u\|_{L^p(\Omega)}$ and $\|u\|_{W^{1,p}(\Omega)}$ are equivalent. (We can consider it as the same). Employing again that the injection $L^p(\Omega) \subset L^p(\Omega)$ is continuous and from above,

$$
\|u\|_{L^p(\Omega)} \leq (Kc \text{ diam}(\Omega))^{p^*} \|\nabla u\|_{L^{p^*}(\Omega)} \leq (Kc \text{ diam}(\Omega))^{p^*} \|\nabla u\|_{L^p(\Omega)}
$$

$\|\nabla u\|_{L^p(\Omega)}$ is to be small large, we have because $\|\nabla u\|_{L^p(\Omega)} \leq \rho(\|u\|)$ si $\|\nabla u\|_{L^p(\Omega)} > 1$:

$$
\|u\|_{L^p(\Omega)} \leq (Kc \text{ diam}(\Omega))^{p^*} \|\nabla u\|_{L^{p^*}(\Omega)} \leq (Kc \text{ diam}(\Omega))^{p^*} \rho(\|u\|)
$$

Then, we obtain

$$
\hat{\Phi}(u, v) \geq \frac{1}{p^+} \rho_{p(x)}(\|u\|) + \frac{1}{q^+} \rho_{q(x)}(\|v\|) - K_1 - 2^{p^+-1}aC_0 \|u\|_{1,p(x)} - 2^{p^+-1}bD_0 \|v\|_{1,q(x)} - a2^{p^+-1}(Kc \text{ diam}(\Omega))^{p^*} \rho(\|u\|)
$$

$$
- b2^{q^+-1}(Kc \text{ diam}(\Omega))^{q^*} \rho(\|v\|).
$$

Let us fix a and b as in (5.4). It results that (because $\|u\|_{1,p(x)} \leq \rho(\|u\|) \leq ||u||_{1,p(x)}$ for $||u||_{1,p(x)} > 1$ for $||u||_{1,p(x)}$ and $||v||_{1,q(x)}$ large enough, we have $\hat{\Phi}(u, v)$ large enough.

We show now that $\hat{\Phi}(u, v)$ is bounded below on $W^{1,p(\cdot)}_0(\Omega) \times W^{1,q(\cdot)}_0(\Omega)$. Indeed, let us remark firstly by using the Young’ Inequalities

$$
2^{p^+-1}aC_0 \|u\|_{1,p(x)} \leq \frac{2^{p^+-1}aC_0}{\lambda} + \lambda \|u\|_{1,p(x)}
$$

and

$$
2^{q^+-1}bD_0 \|v\|_{1,q(x)} \leq \frac{2^{q^+-1}bD_0}{\delta} + \delta \|v\|_{1,q(x)}.
$$

So for $||u||_{1,p(x)} > 1$ et $||v||_{1,q(x)} > 1$, we get

$$
2^{p^+-1}aC_0 \|u\|_{1,p(x)} \leq \frac{2^{p^+-1}aC_0}{\lambda} + \lambda \rho(\|u\|)
$$
and
\[2^{q^+ - 1}bD_0 \|v\|_{1,q(x)} \leq \frac{2^{q^+ - 1}bD_0}{\delta} + \delta \rho(|\nabla v|). \]

It derives that
\[
\hat{\Phi}(u,v) \geq \left(\frac{1}{p^+} - 2^{p^+ - 1}a(Kc \text{diam}(\Omega))^{p^+} - \lambda \right) \rho_{p(x)}(|\nabla u|) \\
+ \left(\frac{1}{q^+} - 2^{q^+ - 1}b(Kc \text{diam}(\Omega))^{q^+} - \delta \right) \rho_{q(x)}(|\nabla v|) \\
- 2^{q^+ - 1}a C_0 \frac{\lambda}{\lambda - K_1} - 2^{q^+ - 1}b \frac{D_0}{\delta} - K_2. \tag{5.5}
\]

By consequently, chosen \(\lambda \) and \(\delta \) verifying:
\[
0 < \lambda < \frac{1}{p^+} - 2^{p^+ - 1}a(Kc \text{diam}(\Omega))^{p^+}
\]
and
\[
0 < \delta < \frac{1}{q^+} - 2^{q^+ - 1}b(Kc \text{diam}(\Omega))^{q^+},
\]
we can write
\[
\hat{\Phi}(u,v) \geq -2^{q^+ - 1}a C_0 \frac{\lambda}{\lambda - K_1} - 2^{q^+ - 1}b \frac{D_0}{\delta} - K_1 - K_2.
\]

Now, for \(\|u\|_{1,p(x)} \leq 1 \) et \(\|v\|_{1,q(x)} \leq 1 \), we have:
\[
C_0 \|u\|_{1,p(x)} \leq C_0 \text{ et } D_0 \|v\|_{1,q(x)} \leq D_0.
\]

Arguing as above, we obtain
\[
\hat{\Phi}(u,v) \geq -K_1 - 2^{q^+ - 1}a C_0 - 2^{q^+ - 1}b D_0.
\]

We can also consider the cases \(\|u\|_{1,p(x)} \geq 1 \) et \(\|v\|_{1,q(x)} \leq 1 \) or \(\|u\|_{1,p(x)} \leq 1 \) and \(\|v\|_{1,q(x)} \geq 1 \).

We conclude that \(\hat{\Phi} \) is estimated below in \(W^{1,p(\cdot),q(\cdot)} \) and so
\[
\inf_{(u,v) \in W^{1,p(\cdot),q(\cdot)}} \hat{\Phi}(u,v)
\]
is real. The proof of Lemma 5.1 is now complete. \(\blacksquare \)

Thus, we can set
\[
\theta = \inf_{(u,v) \in W^{1,p(\cdot),q(\cdot)}} \hat{\Phi}(u,v). \tag{5.6}
\]

Lemma 5.2

1. The minimizing problem (5.6) admits at least one solution \((u^*, v^*)\) in \(W^{1,p(\cdot),q(\cdot)} \).

2. Moreover, \((u^*, v^*)\) is at least a solution of the truncated problem (5.1).
Proof.

1. Let \((u_k, v_k)\) be a minimizing sequence for \(\Phi\), we claim that \((u_k, v_k)\) is bounded.
Assume a moment \(\|u_k\|_{1,p(x)} < 1 \) and \(\|v_k\|_{1,q(x)} < 1\), it is clear that the sequence \((u_k, v_k)\) is bounded.
Now, assume that \(\|u_k\|_{1,p(x)} > 1\) and \(\|v_k\|_{1,q(x)} > 1\). Using (5.5), we get
\[
A_{p(x)}(\|\nabla u_k\|) + B_{p(x)}(\|\nabla v_k\|) \leq \Phi(u_k, v_k) - 2^{n-1}\frac{D_0}{\delta} + K_2 + 2^{n-1}a\frac{C_0}{\lambda} + K_1.
\]
\[
A = \frac{1}{p^+} - 2^{n-1}a(Kc\text{ diam}(\Omega))^{p^-} - \lambda \text{ et } B = \frac{1}{q^+} - 2^{n-1}b(Kc\text{ diam}(\Omega))^{q^-} - \delta \text{ and from above,}
\]
\[
\|u_k\|_{1,p(x)}^p + \|v_k\|_{1,q(x)}^q \leq \min(A, B)\left[\frac{1}{\theta} + 2^{n-1}\frac{D_0}{\delta} + K_2 + 2^{n-1}a\frac{C_0}{\lambda} + K_1\right].
\]
It results that the sequences \(u_k\) and \(v_k\) are bounded in \(W_{0}^{1,p(.)}(\Omega)\) and \(W_{0}^{1,q(.)}(\Omega)\) respectively.
We can combine the cases \(\|u_k\|_{1,p(x)} > 1\) and \(\|v_k\|_{1,q(x)} < 1\) similarly \(\|u_k\|_{1,p(x)} > 1\) and \(\|v_k\|_{1,q(x)} > 1\).
We conclude that, the minimizing sequence \((u_k, v_k)\) is bounded in \(W_{0}^{1,p(.)}(\Omega) \times W_{0}^{1,q(.)}(\Omega)\). We suppose that \(1 < p^- \leq p^+ < +\infty\) and \(1 < q^- \leq q^+ < +\infty\) then in virtue of Theorem 8.1.6 [2], the spaces \(W_{0}^{1,p(.)}(\Omega)\) and \(W_{0}^{1,q(.)}(\Omega)\) are reflexive. Denote again \(u_k\) and \(v_k\) be the extracted sub-sequences which converges weakly in \(W_{0}^{1,p(.)}(\Omega)\) and \(W_{0}^{1,q(.)}(\Omega)\) respectively. Denote as \(u^*_k\) and \(v^*_k\), the weak limits of \(u_k\) and \(v_k\) in \(W_{0}^{1,p(.)}(\Omega)\) and \(W_{0}^{1,q(.)}(\Omega)\) respectively. Because \(\Phi\) is assumed w.l.s.c.i., we get \(\Phi(u^*, v^*) = \inf_{(u,v)\in W_{0}^{1,p(.)}(\Omega)} \Phi(u, v)\).

2. Since \((u^*, v^*) = \arg\min_{(u,v)\in W_{0}^{1,p(.)}(\Omega)} \Phi(u, v)\), from (5.3), the characterization holds \(\langle \Phi'(u, v), (w_1, w_2) \rangle_{W^*, W} = 0, \forall (w_1, w_2) \in W\). By taking successively \(w_1 = 0\) and \(w_2 = 0\) in (5.3), more specially, \((u^*, v^*)\) obeys to the system (5.1).

This completes the proof of the lemma 5.2. ■

In the next section, we are going to aboard the location of \((u^*, v^*)\). More precisely, we claim that \((u^*, v^*) \in [u_0, u^0] \times [v_0, v^0]\).
6 Location of \((u^*, v^*)\)

The last section is devoted by establishing the location of the solution of the truncated problem (5.1). More precisely, we have:

Lemma 6.1 Let \([([u_0, v_0], (u^0, v^0)]\) be the pair of subsolution and supersolution given by the propositions 3.1, 4.1 and 4.3. Under the assumptions of Lemma 5.1, the pair \((u^*, v^*)\) obtained in Lemma 5.2 is as follows:

\[
u_0 \leq u^* \leq u^0, \quad v_0 \leq v^* \leq v^0.\]

Proof. We will only focus our proof to show that \(u_0 \leq u^*\). To start, let us associate to \((u^*, v^*)\) the pair \((U^*, V^*)\) in \(W^{1,p()}_0(\Omega) \times W^{1,q()}_0(\Omega)\) defined as follows

\[
U^* = u^* + (u_0 - u^*)_+ - (u^* - u_0)_+, \quad V^* = v^* + (v_0 - v^*)_+ - (v^* - v_0)_+.
\]

Remember us that \((u^*, v^*)\) is a solution of the truncated system (5.1), obviously for every \(x \in \Omega:\)

\[
-\Delta p(x) u = c(x)U^* |U^*|^{\alpha - 1} |V^*|^{\beta - 1} - a\gamma_1(x, u^*)
\]

by consequently, for every \(v \in [v_0, v^0]:\)

\[
-\Delta p(x) u_0 + \Delta p(x) u^* \leq c(x) |u_0|^{\alpha - 1} v_0 |v|^{\beta + 1} - c(x) U^* |U^*|^{\alpha - 1} |V^*|^{\beta + 1} + a\gamma_1(x, u^*) .
\]

Multiply by \((u_0 - u^*)_+\) and integrate over \(\Omega\), we obtain :

\[
\int_{\Omega} \left(-\Delta p(x) u_0 + \Delta p(x) u^* \right) (u_0 - u^*) \, dx \\
\leq \int_{\Omega} c(x) \left(|u_0|^{\alpha - 1} u_0 |v|^{\beta + 1} - U^* |U^*|^{\alpha - 1} |V^*|^{\beta + 1} \right) \cdot (u_0 - u^*) \, dx \quad (6.1)
\]

+ \int_{\Omega} a\gamma_1(x, u^*) \cdot (u_0 - u^*) \, dx

where \(\Omega_+ = \{ x \in \Omega; \ u^*(x) < u_0(x) \}\). To continue, we consider the subsets of \(\Omega_+:\)

\[
\Omega_+^0 = \{ v^0 < v^* \}, \quad \Omega_+^* = \{ v_0 \leq v^* \leq v^0 \} \quad \text{and} \quad \Omega_{++} = \{ v^* < v_0 \}.
\]

It follows \(V^* = v^0 \{ \mathbb{I}_{\Omega_+^0} \} + v^* \{ \mathbb{I}_{\Omega_+^*} \} + v_0 \{ \mathbb{I}_{\Omega_{++}} \}\). By taking \(v = V^*\) in (6.1), it results because \(U^* = u_0\) in \(\Omega_+\),

\[
\int_{\Omega_+} c(x) \left(|u_0|^{\alpha - 1} u_0 |v|^{\beta + 1} - U^* |U^*|^{\alpha - 1} |V^*|^{\beta + 1} \right) \cdot (u_0 - u^*) \, dx = 0.
\]
Hence, (6.1) is reduced to

\[
\int_{\Omega_+} \left(-\Delta_{p(x)} u_0 + \Delta_{p(x)} u^* \right) (u_0 - u^*) \, dx \leq \int_{\Omega_+} a \gamma_1(x, u^*) (u_0 - u^*) \, dx. \tag{6.2}
\]

$-\Delta_{p(x)}$ is a strict monotone operator, then the left hand is positive strictly while the right hand remains negative by considering the definition of function γ_1 on Ω_+. So, (6.2) becomes valid either Ω_+ is empty or either $u_0 \leq u^*$ in Ω. Analogously, we can also prove $u^* \leq u^0$, $v_0 \leq v^*$ and $v^* \leq v^0$.

References

